Summation of series and an approximation of Legendre?s functions in constructing integral kernels for the exterior of an ellipsoid: Application to boundary value problems in physical geodesy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F15%3A%230002185" target="_blank" >RIV/00025615:_____/15:#0002185 - isvavai.cz</a>
Výsledek na webu
<a href="http://leibnizsozietaet.de/wp-content/uploads/2015/06/holota.pdf" target="_blank" >http://leibnizsozietaet.de/wp-content/uploads/2015/06/holota.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Summation of series and an approximation of Legendre?s functions in constructing integral kernels for the exterior of an ellipsoid: Application to boundary value problems in physical geodesy
Popis výsledku v původním jazyce
The paper primarily concerns physical geodesy applications and thus problems associated with Laplace?s and Poisson?s partial differential equation that offer a natural basis for gravity field studies. In the introduction a brief review is given on Green?s function constructed for Stokes? and Neumann?s problem formulated for the exterior of a sphere. The second of the problems is considered also within the weak solution concept. Galerkin elements are expressed for the special case when the function basisis generated by the respective reproducing kernel or represented by reciprocal distances (elementary potentials). The solution domain is then generalized and the paper focuses on the construction of the reproducing kernel of Hilbert?s space of functionsharmonic in the exterior of an oblate ellipsoid of revolution. In the first stage the kernel is represented by a series of ellipsoidal harmonics. However, the manipulation with the series and a numerical implementation of the integral ke
Název v anglickém jazyce
Summation of series and an approximation of Legendre?s functions in constructing integral kernels for the exterior of an ellipsoid: Application to boundary value problems in physical geodesy
Popis výsledku anglicky
The paper primarily concerns physical geodesy applications and thus problems associated with Laplace?s and Poisson?s partial differential equation that offer a natural basis for gravity field studies. In the introduction a brief review is given on Green?s function constructed for Stokes? and Neumann?s problem formulated for the exterior of a sphere. The second of the problems is considered also within the weak solution concept. Galerkin elements are expressed for the special case when the function basisis generated by the respective reproducing kernel or represented by reciprocal distances (elementary potentials). The solution domain is then generalized and the paper focuses on the construction of the reproducing kernel of Hilbert?s space of functionsharmonic in the exterior of an oblate ellipsoid of revolution. In the first stage the kernel is represented by a series of ellipsoidal harmonics. However, the manipulation with the series and a numerical implementation of the integral ke
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-34595S" target="_blank" >GA14-34595S: Matematické metody pro studium tíhového pole Země</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Leibniz Online
ISSN
1863-3285
e-ISSN
—
Svazek periodika
2015
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—