Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the construction of Galerkin?s matrix for elementary potentials in case of an ellipsoidal solution domain in Earth?s gravity field studies

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F15%3A%230002190" target="_blank" >RIV/00025615:_____/15:#0002190 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the construction of Galerkin?s matrix for elementary potentials in case of an ellipsoidal solution domain in Earth?s gravity field studies

  • Popis výsledku v původním jazyce

    The motivation comes from the role of boundary value problems in Earth?s gravity field studies. The focus is on Neumann?s problem in the exterior of an oblate ellipsoid of revolution. The approach follows the concept of variational methods and the notionof the weak solution. The solution of the problem is approximated by linear combinations of basis functions with scalar coefficients, i.e. by Galerkin approximations. The aim is to discuss the construction of Galerkin?s matrix for elementary potentialsused in quality of a function basis. The computation of the entries of Galerkin?s matrix is expected to be simple for the elementary functions like these. Nevertheless, the opposite is true. Ellipsoidal harmonics are applied as a natural tool. The problem, however, is the summation of the series that represent the entries. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is no analogue to the addition theorem known for spherical harmonics. Thi

  • Název v anglickém jazyce

    On the construction of Galerkin?s matrix for elementary potentials in case of an ellipsoidal solution domain in Earth?s gravity field studies

  • Popis výsledku anglicky

    The motivation comes from the role of boundary value problems in Earth?s gravity field studies. The focus is on Neumann?s problem in the exterior of an oblate ellipsoid of revolution. The approach follows the concept of variational methods and the notionof the weak solution. The solution of the problem is approximated by linear combinations of basis functions with scalar coefficients, i.e. by Galerkin approximations. The aim is to discuss the construction of Galerkin?s matrix for elementary potentialsused in quality of a function basis. The computation of the entries of Galerkin?s matrix is expected to be simple for the elementary functions like these. Nevertheless, the opposite is true. Ellipsoidal harmonics are applied as a natural tool. The problem, however, is the summation of the series that represent the entries. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is no analogue to the addition theorem known for spherical harmonics. Thi

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    DE - Zemský magnetismus, geodesie, geografie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA14-34595S" target="_blank" >GA14-34595S: Matematické metody pro studium tíhového pole Země</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    XI Slovak Geophysical Conference

  • ISBN

    978-80-227-4447-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    1

  • Strana od-do

    43

  • Název nakladatele

    Slovak University of Technology

  • Místo vydání

    Bratislava

  • Místo konání akce

    Bratislava

  • Datum konání akce

    8. 9. 2015

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku