Elementary potentials and Galerkin?s matrix for an ellipsoidal domain in the recovery of the gravity field
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F15%3A%230002196" target="_blank" >RIV/00025615:_____/15:#0002196 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.czech-in.org/cmdownload/IUGG2015/presentations/IUGG-5236.pdf" target="_blank" >http://www.czech-in.org/cmdownload/IUGG2015/presentations/IUGG-5236.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Elementary potentials and Galerkin?s matrix for an ellipsoidal domain in the recovery of the gravity field
Popis výsledku v původním jazyce
The motivation comes from the role of boundary value problems in Earth?s gravity field studies. The focus is on Neumann?s problem in the exterior of an oblate ellipsoid of revolution. The approach follows the concept of variational methods and the notionof the weak solution. The solution of the problem is approximated by linear combinations of basis functions with scalar coefficients, i.e. by Galerkin approximations. The aim is to discuss the construction of Galerkin?s matrix for elementary potentialsused in quality of a function basis. The computation of the entries of Galerkin?s matrix is expected to be simple for the elementary functions like these. Nevertheless, the opposite is true. Ellipsoidal harmonics are applied as a natural tool. The problem, however, is the summation of the series that represent the entries. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is no analogue to the addition theorem known for spherical harmonics. Thi
Název v anglickém jazyce
Elementary potentials and Galerkin?s matrix for an ellipsoidal domain in the recovery of the gravity field
Popis výsledku anglicky
The motivation comes from the role of boundary value problems in Earth?s gravity field studies. The focus is on Neumann?s problem in the exterior of an oblate ellipsoid of revolution. The approach follows the concept of variational methods and the notionof the weak solution. The solution of the problem is approximated by linear combinations of basis functions with scalar coefficients, i.e. by Galerkin approximations. The aim is to discuss the construction of Galerkin?s matrix for elementary potentialsused in quality of a function basis. The computation of the entries of Galerkin?s matrix is expected to be simple for the elementary functions like these. Nevertheless, the opposite is true. Ellipsoidal harmonics are applied as a natural tool. The problem, however, is the summation of the series that represent the entries. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is no analogue to the addition theorem known for spherical harmonics. Thi
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-34595S" target="_blank" >GA14-34595S: Matematické metody pro studium tíhového pole Země</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Praha
Název nakladatele resp. objednatele
International Union of Geodesy and Geophysics
Verze
—
Identifikační číslo nosiče
—