Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neumann’s Function and its Derivatives Constructed for the Exterior of an Ellipsoid and Adapted to an Iteration Solution of the Linear Gravimetric Boundary Value Problem

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F18%3AN0000053" target="_blank" >RIV/00025615:_____/18:N0000053 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://meetingorganizer.copernicus.org/EGU2018/EGU2018-18558.pdf" target="_blank" >http://meetingorganizer.copernicus.org/EGU2018/EGU2018-18558.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neumann’s Function and its Derivatives Constructed for the Exterior of an Ellipsoid and Adapted to an Iteration Solution of the Linear Gravimetric Boundary Value Problem

  • Popis výsledku v původním jazyce

    For geodesy and for gravity field studies in particular the theory of boundary-value problems is of great importance. In this paper the exterior Neumann problem and its close relation to the solution of the linear gravimetric boundary value problem are discussed. For the solution domain given by the exterior of an ellipsoid of revolution the attention is paid to Green’s function representation of the solution and to the construction of Green’s function of the second kind, i.e. Neumann’s function, including the construction of its derivatives. The mutual relation between Green’s function of the first kind, Neumann’s function and the reproducing kernel of the respective Hilbert space is shown and used for this purpose. Ellipsoidal harmonics represent an efficient tool in constructing these integral kernels. Within the approach applied they are expressed by infinite hypergeometric series. The series then appear also in Neumann’s function. The summation problems are solved in two independent ways, by a direct numerical approach and by means of analytical steps leading to closed formulas based on elliptic integrals. The results are confronted, subjected to numerical tests and discussed.

  • Název v anglickém jazyce

    Neumann’s Function and its Derivatives Constructed for the Exterior of an Ellipsoid and Adapted to an Iteration Solution of the Linear Gravimetric Boundary Value Problem

  • Popis výsledku anglicky

    For geodesy and for gravity field studies in particular the theory of boundary-value problems is of great importance. In this paper the exterior Neumann problem and its close relation to the solution of the linear gravimetric boundary value problem are discussed. For the solution domain given by the exterior of an ellipsoid of revolution the attention is paid to Green’s function representation of the solution and to the construction of Green’s function of the second kind, i.e. Neumann’s function, including the construction of its derivatives. The mutual relation between Green’s function of the first kind, Neumann’s function and the reproducing kernel of the respective Hilbert space is shown and used for this purpose. Ellipsoidal harmonics represent an efficient tool in constructing these integral kernels. Within the approach applied they are expressed by infinite hypergeometric series. The series then appear also in Neumann’s function. The summation problems are solved in two independent ways, by a direct numerical approach and by means of analytical steps leading to closed formulas based on elliptic integrals. The results are confronted, subjected to numerical tests and discussed.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů