Green’s Functions in Combining Terrestrial Data and Satellite-only Models for Earth’s Gravity Field Recovery
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F19%3AN0000053" target="_blank" >RIV/00025615:_____/19:N0000053 - isvavai.cz</a>
Výsledek na webu
<a href="https://lps19.esa.int/NikalWebsitePortal/living-planet-symposium-2019/lps19/Agenda/AgendaItemDetail?id=6bdbe5c8-3341-4609-9eff-cd29263db83b" target="_blank" >https://lps19.esa.int/NikalWebsitePortal/living-planet-symposium-2019/lps19/Agenda/AgendaItemDetail?id=6bdbe5c8-3341-4609-9eff-cd29263db83b</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Green’s Functions in Combining Terrestrial Data and Satellite-only Models for Earth’s Gravity Field Recovery
Popis výsledku v původním jazyce
In gravity field studies satellite and terrestrial data complement each other. Potential theory forms the respective basis, but the problem considered is overdetermined by nature. Therefore, methods for solving boundary-value problems are combined with optimization concepts. In the first stage an implementation of Green’s function method is discussed. The approach is iterative. A transformation of spatial coordinates is used that opens a possibility for an alternative between the boundary complexity and the complexity of the coefficients of Laplace’s equation governing the solution. The solution domain is carried onto a spherical layer (domain bounded by two concentric spheres). Obviously, the structure of the Laplacian is more complex after the transformation. Nevertheless, the construction of the respective Green’s function is simpler for the solution domain transformed. The integral representation of the solution gives a better insight into the role, which the input data have in the global and the local modelling of the gravity field. Subsequently, the continuation of the solution is discussed with a particular view to its harmonic nature, analytic extension and regularity at infinity. The reasoning leads to compatibility examinations of the two data sources and to energy preserving optimization concepts considered in the paper.
Název v anglickém jazyce
Green’s Functions in Combining Terrestrial Data and Satellite-only Models for Earth’s Gravity Field Recovery
Popis výsledku anglicky
In gravity field studies satellite and terrestrial data complement each other. Potential theory forms the respective basis, but the problem considered is overdetermined by nature. Therefore, methods for solving boundary-value problems are combined with optimization concepts. In the first stage an implementation of Green’s function method is discussed. The approach is iterative. A transformation of spatial coordinates is used that opens a possibility for an alternative between the boundary complexity and the complexity of the coefficients of Laplace’s equation governing the solution. The solution domain is carried onto a spherical layer (domain bounded by two concentric spheres). Obviously, the structure of the Laplacian is more complex after the transformation. Nevertheless, the construction of the respective Green’s function is simpler for the solution domain transformed. The integral representation of the solution gives a better insight into the role, which the input data have in the global and the local modelling of the gravity field. Subsequently, the continuation of the solution is discussed with a particular view to its harmonic nature, analytic extension and regularity at infinity. The reasoning leads to compatibility examinations of the two data sources and to energy preserving optimization concepts considered in the paper.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů