Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Green’s Functions in Combining Terrestrial Data and Satellite-only Models for Earth’s Gravity Field Recovery

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F19%3AN0000053" target="_blank" >RIV/00025615:_____/19:N0000053 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://lps19.esa.int/NikalWebsitePortal/living-planet-symposium-2019/lps19/Agenda/AgendaItemDetail?id=6bdbe5c8-3341-4609-9eff-cd29263db83b" target="_blank" >https://lps19.esa.int/NikalWebsitePortal/living-planet-symposium-2019/lps19/Agenda/AgendaItemDetail?id=6bdbe5c8-3341-4609-9eff-cd29263db83b</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Green’s Functions in Combining Terrestrial Data and Satellite-only Models for Earth’s Gravity Field Recovery

  • Popis výsledku v původním jazyce

    In gravity field studies satellite and terrestrial data complement each other. Potential theory forms the respective basis, but the problem considered is overdetermined by nature. Therefore, methods for solving boundary-value problems are combined with optimization concepts. In the first stage an implementation of Green’s function method is discussed. The approach is iterative. A transformation of spatial coordinates is used that opens a possibility for an alternative between the boundary complexity and the complexity of the coefficients of Laplace’s equation governing the solution. The solution domain is carried onto a spherical layer (domain bounded by two concentric spheres). Obviously, the structure of the Laplacian is more complex after the transformation. Nevertheless, the construction of the respective Green’s function is simpler for the solution domain transformed. The integral representation of the solution gives a better insight into the role, which the input data have in the global and the local modelling of the gravity field. Subsequently, the continuation of the solution is discussed with a particular view to its harmonic nature, analytic extension and regularity at infinity. The reasoning leads to compatibility examinations of the two data sources and to energy preserving optimization concepts considered in the paper.

  • Název v anglickém jazyce

    Green’s Functions in Combining Terrestrial Data and Satellite-only Models for Earth’s Gravity Field Recovery

  • Popis výsledku anglicky

    In gravity field studies satellite and terrestrial data complement each other. Potential theory forms the respective basis, but the problem considered is overdetermined by nature. Therefore, methods for solving boundary-value problems are combined with optimization concepts. In the first stage an implementation of Green’s function method is discussed. The approach is iterative. A transformation of spatial coordinates is used that opens a possibility for an alternative between the boundary complexity and the complexity of the coefficients of Laplace’s equation governing the solution. The solution domain is carried onto a spherical layer (domain bounded by two concentric spheres). Obviously, the structure of the Laplacian is more complex after the transformation. Nevertheless, the construction of the respective Green’s function is simpler for the solution domain transformed. The integral representation of the solution gives a better insight into the role, which the input data have in the global and the local modelling of the gravity field. Subsequently, the continuation of the solution is discussed with a particular view to its harmonic nature, analytic extension and regularity at infinity. The reasoning leads to compatibility examinations of the two data sources and to energy preserving optimization concepts considered in the paper.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů