Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Testing a Modified PCA-Based Sharpening Approach for Image Fusion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F16%3A00000143" target="_blank" >RIV/00025798:_____/16:00000143 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.mdpi.com/2072-4292/8/10/794" target="_blank" >http://www.mdpi.com/2072-4292/8/10/794</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs8100794" target="_blank" >10.3390/rs8100794</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Testing a Modified PCA-Based Sharpening Approach for Image Fusion

  • Popis výsledku v původním jazyce

    Image data sharpening is a challenging field of remote sensing science, which has become more relevant as high spatial-resolution satellites and superspectral sensors have emerged. Although the spectral property is crucial for mineral mapping, spatial resolution is also important as it allows targeted minerals/rocks to be identified/interpreted in a spatial context. Therefore, improving the spatial context, while keeping the spectral property provided by the superspectral sensor, would bring great benefits for geological/mineralogical mapping especially in arid environments. In this paper, a new concept was tested using superspectral data (ASTER) and high spatial-resolution panchromatic data (WorldView-2) for image fusion. A modified Principal Component Analysis (PCA)-based sharpening method, which implements a histogram matching workflow that takes into account the real distribution of values, was employed to test whether the substitution of Principal Components (PC1–PC4) can bring a fused image which is spectrally more accurate. The new approach was compared to those most widely used—PCA sharpening and Gram–Schmidt sharpening (GS), both available in ENVI software (Version 5.2 and lower) as well as to the standard approach—sharpening Landsat 8 multispectral bands (MUL) using its own panchromatic (PAN) band. The visual assessment and the spectral quality indicators proved that the spectral performance of the proposed sharpening approach employing PC1 and PC2 improve the performance of the PCA algorithm, moreover, comparable or better results are achieved compared to the GS method. It was shown that, when using the PC1, the visible-near infrared (VNIR) part of the spectrum was preserved better, however, if the PC2 was used, the short-wave infrared (SWIR) part was preserved better. Furthermore, this approach improved the output spectral quality when fusing image data from different sensors while keeping the proper albedo scaling when substituting the second PC.

  • Název v anglickém jazyce

    Testing a Modified PCA-Based Sharpening Approach for Image Fusion

  • Popis výsledku anglicky

    Image data sharpening is a challenging field of remote sensing science, which has become more relevant as high spatial-resolution satellites and superspectral sensors have emerged. Although the spectral property is crucial for mineral mapping, spatial resolution is also important as it allows targeted minerals/rocks to be identified/interpreted in a spatial context. Therefore, improving the spatial context, while keeping the spectral property provided by the superspectral sensor, would bring great benefits for geological/mineralogical mapping especially in arid environments. In this paper, a new concept was tested using superspectral data (ASTER) and high spatial-resolution panchromatic data (WorldView-2) for image fusion. A modified Principal Component Analysis (PCA)-based sharpening method, which implements a histogram matching workflow that takes into account the real distribution of values, was employed to test whether the substitution of Principal Components (PC1–PC4) can bring a fused image which is spectrally more accurate. The new approach was compared to those most widely used—PCA sharpening and Gram–Schmidt sharpening (GS), both available in ENVI software (Version 5.2 and lower) as well as to the standard approach—sharpening Landsat 8 multispectral bands (MUL) using its own panchromatic (PAN) band. The visual assessment and the spectral quality indicators proved that the spectral performance of the proposed sharpening approach employing PC1 and PC2 improve the performance of the PCA algorithm, moreover, comparable or better results are achieved compared to the GS method. It was shown that, when using the PC1, the visible-near infrared (VNIR) part of the spectrum was preserved better, however, if the PC2 was used, the short-wave infrared (SWIR) part was preserved better. Furthermore, this approach improved the output spectral quality when fusing image data from different sensors while keeping the proper albedo scaling when substituting the second PC.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JV - Kosmické technologie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Remote Sensing

  • ISSN

    2072-4292

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    25

  • Strana od-do

    Article n. 794

  • Kód UT WoS článku

    000387357300008

  • EID výsledku v databázi Scopus