Remote sensing image fusion based on PCA and wavelets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570458" target="_blank" >RIV/70883521:28140/23:63570458 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-981-19-7524-0_3" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-19-7524-0_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-19-7524-0_3" target="_blank" >10.1007/978-981-19-7524-0_3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Remote sensing image fusion based on PCA and wavelets
Popis výsledku v původním jazyce
Remote sensing, in the recent past, has witnessed continuous developments in the field of environment, agriculture and security. The satellites obtain the information in two domains—spectral resolution and spatial resolution which are highlighted in the Low-Resolution Multi-Spectral (LRMS) and the Panchromatic (PAN) images, respectively. Remote sensing image fusion aims to integrate this complimentary information of the PAN and the LRMS images. In this paper, this has been achieved through Principal Component Analysis (PCA) and Discrete Wavelet Transformation (DWT). The proposed fusion approach involves extraction of the Ist Principal Component (PC) of the LRMS image while simultaneously performing Morphological Hat Transformation on PAN image. The resultant images undergo Discrete Wavelet Transformation to produce approximation (cA) and detail (cD) coefficients. These coefficients are fused using appropriate fusion rules, and the resultant images are synthesized using Inverse Discrete Wavelet Transformation (IDWT) to produce the final fused image. The results have been evaluated which are presented in the later sections. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Název v anglickém jazyce
Remote sensing image fusion based on PCA and wavelets
Popis výsledku anglicky
Remote sensing, in the recent past, has witnessed continuous developments in the field of environment, agriculture and security. The satellites obtain the information in two domains—spectral resolution and spatial resolution which are highlighted in the Low-Resolution Multi-Spectral (LRMS) and the Panchromatic (PAN) images, respectively. Remote sensing image fusion aims to integrate this complimentary information of the PAN and the LRMS images. In this paper, this has been achieved through Principal Component Analysis (PCA) and Discrete Wavelet Transformation (DWT). The proposed fusion approach involves extraction of the Ist Principal Component (PC) of the LRMS image while simultaneously performing Morphological Hat Transformation on PAN image. The resultant images undergo Discrete Wavelet Transformation to produce approximation (cA) and detail (cD) coefficients. These coefficients are fused using appropriate fusion rules, and the resultant images are synthesized using Inverse Discrete Wavelet Transformation (IDWT) to produce the final fused image. The results have been evaluated which are presented in the later sections. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Smart Innovation, Systems and Technologies
ISBN
978-981-19752-3-3
ISSN
2190-3018
e-ISSN
2190-3026
Počet stran výsledku
9
Strana od-do
25-33
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
Aizawl
Datum konání akce
18. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—