Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Modelling diverse soil parameters with visible to longwave infrared spectroscopy using PLSR employed by an automatic modelling engine

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F17%3A00000002" target="_blank" >RIV/00025798:_____/17:00000002 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.3390/rs9020134" target="_blank" >http://dx.doi.org/10.3390/rs9020134</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs9020134" target="_blank" >10.3390/rs9020134</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Modelling diverse soil parameters with visible to longwave infrared spectroscopy using PLSR employed by an automatic modelling engine

  • Popis výsledku v původním jazyce

    The study tested a data mining engine (PARCUDA®) to predict various soil attributes (BC, CEC, BS, pH, Corg, Pb, Hg, As, Zn and Cu) using reflectance data acquired for both optical and thermal infrared regions. The PARCUDA® was designed to utilize large data in parallel and automatic processing to build and process hundreds of diverse models in a unified manner while avoiding bias and deviations caused by the operator(s). The system is able to systematically assess the effect of diverse preprocessing techniques; additionally it analyses other parameters, such as different spectral resolutions and spectral coverages, that affect soil properties. Accordingly, the system was used to extract models across both optical and thermal infrared spectral regions, which holds significant chromophores. In total, 2880 models were evaluated where each model was generated with a different preprocessing scheme of the input spectral data. The models were assessed using statistical parameters such as R2 SEP, RPD and by physical explanation (spectral assignments). It was found that the smoothing procedure is the most beneficial preprocessing stage, especially when combined with spectral derivation (1st or 2nd derivatives). Automatically and without any operator intervention the PARACUDA® engine enabled the best prediction models to be found out of all the combinations tested. Furthermore, the PARACUDA® engine and the presented processing scheme proved to be efficient tools for getting a better understanding of the geochemical properties of the samples studied (e.g., mineral associations).

  • Název v anglickém jazyce

    Modelling diverse soil parameters with visible to longwave infrared spectroscopy using PLSR employed by an automatic modelling engine

  • Popis výsledku anglicky

    The study tested a data mining engine (PARCUDA®) to predict various soil attributes (BC, CEC, BS, pH, Corg, Pb, Hg, As, Zn and Cu) using reflectance data acquired for both optical and thermal infrared regions. The PARCUDA® was designed to utilize large data in parallel and automatic processing to build and process hundreds of diverse models in a unified manner while avoiding bias and deviations caused by the operator(s). The system is able to systematically assess the effect of diverse preprocessing techniques; additionally it analyses other parameters, such as different spectral resolutions and spectral coverages, that affect soil properties. Accordingly, the system was used to extract models across both optical and thermal infrared spectral regions, which holds significant chromophores. In total, 2880 models were evaluated where each model was generated with a different preprocessing scheme of the input spectral data. The models were assessed using statistical parameters such as R2 SEP, RPD and by physical explanation (spectral assignments). It was found that the smoothing procedure is the most beneficial preprocessing stage, especially when combined with spectral derivation (1st or 2nd derivatives). Automatically and without any operator intervention the PARACUDA® engine enabled the best prediction models to be found out of all the combinations tested. Furthermore, the PARACUDA® engine and the presented processing scheme proved to be efficient tools for getting a better understanding of the geochemical properties of the samples studied (e.g., mineral associations).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20705 - Remote sensing

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/8G15004" target="_blank" >8G15004: Nový přístup pro modelování degradace půd s využitím superspektrálních dat</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Remote Sensing

  • ISSN

    1424-8220

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    22

  • Strana od-do

    Article n. 134

  • Kód UT WoS článku

    000397013700036

  • EID výsledku v databázi Scopus

    2-s2.0-85013676577