Modelling diverse soil parameters with visible to longwave infrared spectroscopy using PLSR employed by an automatic modelling engine
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F17%3A00000002" target="_blank" >RIV/00025798:_____/17:00000002 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3390/rs9020134" target="_blank" >http://dx.doi.org/10.3390/rs9020134</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs9020134" target="_blank" >10.3390/rs9020134</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling diverse soil parameters with visible to longwave infrared spectroscopy using PLSR employed by an automatic modelling engine
Popis výsledku v původním jazyce
The study tested a data mining engine (PARCUDA®) to predict various soil attributes (BC, CEC, BS, pH, Corg, Pb, Hg, As, Zn and Cu) using reflectance data acquired for both optical and thermal infrared regions. The PARCUDA® was designed to utilize large data in parallel and automatic processing to build and process hundreds of diverse models in a unified manner while avoiding bias and deviations caused by the operator(s). The system is able to systematically assess the effect of diverse preprocessing techniques; additionally it analyses other parameters, such as different spectral resolutions and spectral coverages, that affect soil properties. Accordingly, the system was used to extract models across both optical and thermal infrared spectral regions, which holds significant chromophores. In total, 2880 models were evaluated where each model was generated with a different preprocessing scheme of the input spectral data. The models were assessed using statistical parameters such as R2 SEP, RPD and by physical explanation (spectral assignments). It was found that the smoothing procedure is the most beneficial preprocessing stage, especially when combined with spectral derivation (1st or 2nd derivatives). Automatically and without any operator intervention the PARACUDA® engine enabled the best prediction models to be found out of all the combinations tested. Furthermore, the PARACUDA® engine and the presented processing scheme proved to be efficient tools for getting a better understanding of the geochemical properties of the samples studied (e.g., mineral associations).
Název v anglickém jazyce
Modelling diverse soil parameters with visible to longwave infrared spectroscopy using PLSR employed by an automatic modelling engine
Popis výsledku anglicky
The study tested a data mining engine (PARCUDA®) to predict various soil attributes (BC, CEC, BS, pH, Corg, Pb, Hg, As, Zn and Cu) using reflectance data acquired for both optical and thermal infrared regions. The PARCUDA® was designed to utilize large data in parallel and automatic processing to build and process hundreds of diverse models in a unified manner while avoiding bias and deviations caused by the operator(s). The system is able to systematically assess the effect of diverse preprocessing techniques; additionally it analyses other parameters, such as different spectral resolutions and spectral coverages, that affect soil properties. Accordingly, the system was used to extract models across both optical and thermal infrared spectral regions, which holds significant chromophores. In total, 2880 models were evaluated where each model was generated with a different preprocessing scheme of the input spectral data. The models were assessed using statistical parameters such as R2 SEP, RPD and by physical explanation (spectral assignments). It was found that the smoothing procedure is the most beneficial preprocessing stage, especially when combined with spectral derivation (1st or 2nd derivatives). Automatically and without any operator intervention the PARACUDA® engine enabled the best prediction models to be found out of all the combinations tested. Furthermore, the PARACUDA® engine and the presented processing scheme proved to be efficient tools for getting a better understanding of the geochemical properties of the samples studied (e.g., mineral associations).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
<a href="/cs/project/8G15004" target="_blank" >8G15004: Nový přístup pro modelování degradace půd s využitím superspektrálních dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
1424-8220
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
Article n. 134
Kód UT WoS článku
000397013700036
EID výsledku v databázi Scopus
2-s2.0-85013676577