Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Examining the Performance of PARACUDA-II Data-Mining Engine versus Selected Techniques to Model Soil Carbon from Reflectance Spectra

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F18%3A43897339" target="_blank" >RIV/60076658:12520/18:43897339 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60460709:41210/18:76922 RIV/00025798:_____/18:00000063

  • Výsledek na webu

    <a href="http://www.mdpi.com/2072-4292/10/8/1172/htm" target="_blank" >http://www.mdpi.com/2072-4292/10/8/1172/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs10081172" target="_blank" >10.3390/rs10081172</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Examining the Performance of PARACUDA-II Data-Mining Engine versus Selected Techniques to Model Soil Carbon from Reflectance Spectra

  • Popis výsledku v původním jazyce

    The monitoring and quantification of soil carbon provide a better understanding of soil and atmosphere dynamics. Visible-near-infrared-short-wave infrared (VIS-NIR-SWIR) reflectance spectroscopy can quantitatively estimate soil carbon content more rapidly and cost-effectively compared to traditional laboratory analysis. However, effective estimation of soil carbon using reflectance spectroscopy to a great extent depends on the selection of a suitable preprocessing sequence and data-mining algorithm. Many efforts have been dedicated to the comparison of conventional chemometric techniques and their optimization for soil properties prediction. Instead, the current study focuses on the potential of the new data-mining engine PARACUDA-II (R), recently developed at Tel-Aviv University (TAU), by comparing its performance in predicting soil oxidizable carbon (Cox) against common data-mining algorithms including partial least squares regression (PLSR), random forests (RF), boosted regression trees (BRT), support vector machine regression (SVMR), and memory based learning (MBL). To this end, 103 soil samples from the Pokrok dumpsite in the Czech Republic were scanned with an ASD FieldSpec III Pro FR spectroradiometer in the laboratory under a strict protocol. Spectra preprocessing for conventional data-mining techniques was conducted using Savitzky-Golay smoothing and the first derivative method. PARACUDA-II (R), on the other hand, operates based on the all possibilities approach (APA) concept, a conditional Latin hypercube sampling (cLHs) algorithm and parallel programming, to evaluate all of the potential combinations of eight different spectral preprocessing techniques against the original reflectance and chemical data prior to the model development. The comparison of results was made in terms of the coefficient of determination (R-2) and root-mean-square error of prediction (RMSEp). Results showed that the PARACUDA-II (R) engine performed better than the other selected regular schemes with R-2 value of 0.80 and RMSEp of 0.12; the PLSR was less predictive compared to other techniques with R-2 = 0.63 and RMSEp = 0.29. This can be attributed to its capability to assess all the available options in an automatic way, which enables the hidden models to rise up and yield the best available model.

  • Název v anglickém jazyce

    Examining the Performance of PARACUDA-II Data-Mining Engine versus Selected Techniques to Model Soil Carbon from Reflectance Spectra

  • Popis výsledku anglicky

    The monitoring and quantification of soil carbon provide a better understanding of soil and atmosphere dynamics. Visible-near-infrared-short-wave infrared (VIS-NIR-SWIR) reflectance spectroscopy can quantitatively estimate soil carbon content more rapidly and cost-effectively compared to traditional laboratory analysis. However, effective estimation of soil carbon using reflectance spectroscopy to a great extent depends on the selection of a suitable preprocessing sequence and data-mining algorithm. Many efforts have been dedicated to the comparison of conventional chemometric techniques and their optimization for soil properties prediction. Instead, the current study focuses on the potential of the new data-mining engine PARACUDA-II (R), recently developed at Tel-Aviv University (TAU), by comparing its performance in predicting soil oxidizable carbon (Cox) against common data-mining algorithms including partial least squares regression (PLSR), random forests (RF), boosted regression trees (BRT), support vector machine regression (SVMR), and memory based learning (MBL). To this end, 103 soil samples from the Pokrok dumpsite in the Czech Republic were scanned with an ASD FieldSpec III Pro FR spectroradiometer in the laboratory under a strict protocol. Spectra preprocessing for conventional data-mining techniques was conducted using Savitzky-Golay smoothing and the first derivative method. PARACUDA-II (R), on the other hand, operates based on the all possibilities approach (APA) concept, a conditional Latin hypercube sampling (cLHs) algorithm and parallel programming, to evaluate all of the potential combinations of eight different spectral preprocessing techniques against the original reflectance and chemical data prior to the model development. The comparison of results was made in terms of the coefficient of determination (R-2) and root-mean-square error of prediction (RMSEp). Results showed that the PARACUDA-II (R) engine performed better than the other selected regular schemes with R-2 value of 0.80 and RMSEp of 0.12; the PLSR was less predictive compared to other techniques with R-2 = 0.63 and RMSEp = 0.29. This can be attributed to its capability to assess all the available options in an automatic way, which enables the hidden models to rise up and yield the best available model.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Remote Sensing

  • ISSN

    2072-4292

  • e-ISSN

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    18

  • Strana od-do

  • Kód UT WoS článku

    000443618100008

  • EID výsledku v databázi Scopus

    2-s2.0-85051670455