Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Memory-Based Learning Approach as Compared to Other Data Mining Algorithms for the Prediction of Soil Texture Using Diffuse Reflectance Spectra

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F16%3A43890560" target="_blank" >RIV/60076658:12520/16:43890560 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60460709:41210/16:70316

  • Výsledek na webu

    <a href="http://www.mdpi.com/2072-4292/8/4/341/htm" target="_blank" >http://www.mdpi.com/2072-4292/8/4/341/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs8040341" target="_blank" >10.3390/rs8040341</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Memory-Based Learning Approach as Compared to Other Data Mining Algorithms for the Prediction of Soil Texture Using Diffuse Reflectance Spectra

  • Popis výsledku v původním jazyce

    Successful determination of soil texture using reflectance spectroscopy across Visible and Near-Infrared (VNIR, 400-1200 nm) and Short-Wave-Infrared (SWIR, 1200-2500 nm) ranges depends largely on the selection of a suitable data mining algorithm. The objective of this research was to explore whether the new Memory-Based Learning (MBL) method performs better than the other methods, namely: Partial Least Squares Regression (PLSR), Support Vector Machine Regression (SVMR) and Boosted Regression Trees (BRT). For this purpose, we chose soil texture (contents of clay, silt and sand) as testing attributes. A selected set of soil samples, classified as Technosols, were collected from brown coal mining dumpsites in the Czech Republic (a total of 264 samples). Spectral readings were taken in the laboratory with a fiber optic ASD FieldSpec III Pro FR spectroradiometer. Leave-one-out cross-validation was used to optimize and validate the models. Comparisons were made in terms of the coefficient of determination (R-cv(2)) and the Root Mean Square Error of Prediction of Cross-Validation (RMSEPcv). Predictions of the three soil properties by MBL outperformed the accuracy of the remaining algorithms. We found that the MBL performs better than the other three methods by about 10% (largest R-cv(2) and smallest RMSEPcv), followed by the SVMR. It should be pointed out that the other methods (PLSR and BRT) still provided reliable results. The study concluded that in this examined dataset, reflectance spectroscopy combined with the MBL algorithm is rapid and accurate, offers major efficiency and cost-saving possibilities in other datasets and can lead to better targeting of management interventions.

  • Název v anglickém jazyce

    A Memory-Based Learning Approach as Compared to Other Data Mining Algorithms for the Prediction of Soil Texture Using Diffuse Reflectance Spectra

  • Popis výsledku anglicky

    Successful determination of soil texture using reflectance spectroscopy across Visible and Near-Infrared (VNIR, 400-1200 nm) and Short-Wave-Infrared (SWIR, 1200-2500 nm) ranges depends largely on the selection of a suitable data mining algorithm. The objective of this research was to explore whether the new Memory-Based Learning (MBL) method performs better than the other methods, namely: Partial Least Squares Regression (PLSR), Support Vector Machine Regression (SVMR) and Boosted Regression Trees (BRT). For this purpose, we chose soil texture (contents of clay, silt and sand) as testing attributes. A selected set of soil samples, classified as Technosols, were collected from brown coal mining dumpsites in the Czech Republic (a total of 264 samples). Spectral readings were taken in the laboratory with a fiber optic ASD FieldSpec III Pro FR spectroradiometer. Leave-one-out cross-validation was used to optimize and validate the models. Comparisons were made in terms of the coefficient of determination (R-cv(2)) and the Root Mean Square Error of Prediction of Cross-Validation (RMSEPcv). Predictions of the three soil properties by MBL outperformed the accuracy of the remaining algorithms. We found that the MBL performs better than the other three methods by about 10% (largest R-cv(2) and smallest RMSEPcv), followed by the SVMR. It should be pointed out that the other methods (PLSR and BRT) still provided reliable results. The study concluded that in this examined dataset, reflectance spectroscopy combined with the MBL algorithm is rapid and accurate, offers major efficiency and cost-saving possibilities in other datasets and can lead to better targeting of management interventions.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Remote Sensing

  • ISSN

    2072-4292

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    17

  • Strana od-do

  • Kód UT WoS článku

    000375156500074

  • EID výsledku v databázi Scopus