Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparison of imputation methods in Czech Holstein population

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027014%3A_____%2F20%3AN0000184" target="_blank" >RIV/00027014:_____/20:N0000184 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://vuzv.cz/_privat/20178.pdf" target="_blank" >https://vuzv.cz/_privat/20178.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparison of imputation methods in Czech Holstein population

  • Popis výsledku v původním jazyce

    The importance of genomic data in the breeding of dairy cattle is growing. Genomic information is used not only for genomic selection but also for revealing the genetic architecture. Data from DNA genotyping chips of various densities are available. Genotype imputation is the process of using reference population genotyped at a higher density to predict genotypes in population genotyped at a lower density. Our aim was to compare three different methods of genetic imputation with FImpute software and to choose the best one for Holstein population in the Czech Republic. We compared (1) imputation based on pedigree data, (2) population imputation and (3) combination of both approaches. A simulation study was performed on 3,994 animals genotyped on Illumina 50kBeadChip v.2, of which 994 animals were artificially masked on Illumina LD Beadchip v.2. Masked animals were imputed by all three methods. The success rate was based on two parameters: (1) imputation accuracy and (2) the percentage of correctly imputed SNPs. Since the animals to be masked were randomly selected, the whole calculation process was repeated 100 times, and the resulting parameters were averaged. We achieved the highest average accuracy (0.831±0.0004) and the highest percentage of correctly imputed SNPs (0.963±0.0008) with population imputation. For the combined method of imputation, the average accuracy was 0.827±0.0004 and the percentage of correctly imputed SNPs 0.957±0.0009. Since the massive genotyping of animals in the Czech Republic began a few years ago, our database does not contain enough genotyped ancestors. For this reason, pedigree imputation achieved low average accuracy of 0.132±0.0039 and the percentage of correctly imputed SNPs was 0.274± 0.0109. The results showed that pedigree imputation is currently not suitable for our population, and we need to focus on the population approach.

  • Název v anglickém jazyce

    Comparison of imputation methods in Czech Holstein population

  • Popis výsledku anglicky

    The importance of genomic data in the breeding of dairy cattle is growing. Genomic information is used not only for genomic selection but also for revealing the genetic architecture. Data from DNA genotyping chips of various densities are available. Genotype imputation is the process of using reference population genotyped at a higher density to predict genotypes in population genotyped at a lower density. Our aim was to compare three different methods of genetic imputation with FImpute software and to choose the best one for Holstein population in the Czech Republic. We compared (1) imputation based on pedigree data, (2) population imputation and (3) combination of both approaches. A simulation study was performed on 3,994 animals genotyped on Illumina 50kBeadChip v.2, of which 994 animals were artificially masked on Illumina LD Beadchip v.2. Masked animals were imputed by all three methods. The success rate was based on two parameters: (1) imputation accuracy and (2) the percentage of correctly imputed SNPs. Since the animals to be masked were randomly selected, the whole calculation process was repeated 100 times, and the resulting parameters were averaged. We achieved the highest average accuracy (0.831±0.0004) and the highest percentage of correctly imputed SNPs (0.963±0.0008) with population imputation. For the combined method of imputation, the average accuracy was 0.827±0.0004 and the percentage of correctly imputed SNPs 0.957±0.0009. Since the massive genotyping of animals in the Czech Republic began a few years ago, our database does not contain enough genotyped ancestors. For this reason, pedigree imputation achieved low average accuracy of 0.132±0.0039 and the percentage of correctly imputed SNPs was 0.274± 0.0109. The results showed that pedigree imputation is currently not suitable for our population, and we need to focus on the population approach.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    40203 - Husbandry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/QK1810253" target="_blank" >QK1810253: Navýšení spolehlivosti celostátního genomického hodnocení dojeného skotu zařazením krav s domácí užitkovostí do genotypované referenční populace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů