Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Impact of reference population and marker density on accuracy of population imputation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027014%3A_____%2F19%3AN0000168" target="_blank" >RIV/00027014:_____/19:N0000168 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.agriculturejournals.cz/publicFiles/148_2019-CJAS.pdf" target="_blank" >https://www.agriculturejournals.cz/publicFiles/148_2019-CJAS.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.17221/148/2019-CJAS" target="_blank" >10.17221/148/2019-CJAS</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Impact of reference population and marker density on accuracy of population imputation

  • Popis výsledku v původním jazyce

    The effect of the reference population size and the number of missing single nucleotide polymorphisms (SNPs) on imputation accuracy was determined. The population imputation method using the FImpute software was applied. The dataset used for the purpose of this study was taken from the database of the Holstein Cattle Breeders Association of the Czech Republic. It contains 1000 animals genotyped with the Illumina BovineSNP50 v.2 BeadChip. Two datasets were created, the first containing the original genotypes, including the missing SNPs, the second containing the same genotypes modified to avoid missing data. In these datasets, animals were randomly selected for a reference population (10, 25, 50 and 75%) and there were randomly selected SNPs for deletion (15, 30, 55, 70, and 95%) in animals that were not used as the reference population. Subsequently, the data accuracy was determined by two parameters: correlation between original and imputed SNPs and percentage of correctly imputed SNPs. Since animals and SNPs were randomly selected, the process including data imputation was repeated 100 times. Accuracy was determined as the average accuracy over all repetitions. It was found that the imputation accuracy is influenced by both parameters. If the size of the reference population is sufficient, the imputation accuracy is higher despite the large number of missing SNPs.

  • Název v anglickém jazyce

    Impact of reference population and marker density on accuracy of population imputation

  • Popis výsledku anglicky

    The effect of the reference population size and the number of missing single nucleotide polymorphisms (SNPs) on imputation accuracy was determined. The population imputation method using the FImpute software was applied. The dataset used for the purpose of this study was taken from the database of the Holstein Cattle Breeders Association of the Czech Republic. It contains 1000 animals genotyped with the Illumina BovineSNP50 v.2 BeadChip. Two datasets were created, the first containing the original genotypes, including the missing SNPs, the second containing the same genotypes modified to avoid missing data. In these datasets, animals were randomly selected for a reference population (10, 25, 50 and 75%) and there were randomly selected SNPs for deletion (15, 30, 55, 70, and 95%) in animals that were not used as the reference population. Subsequently, the data accuracy was determined by two parameters: correlation between original and imputed SNPs and percentage of correctly imputed SNPs. Since animals and SNPs were randomly selected, the process including data imputation was repeated 100 times. Accuracy was determined as the average accuracy over all repetitions. It was found that the imputation accuracy is influenced by both parameters. If the size of the reference population is sufficient, the imputation accuracy is higher despite the large number of missing SNPs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40203 - Husbandry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/QK1810253" target="_blank" >QK1810253: Navýšení spolehlivosti celostátního genomického hodnocení dojeného skotu zařazením krav s domácí užitkovostí do genotypované referenční populace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Czech Journal of Animal Science

  • ISSN

    1212-1819

  • e-ISSN

  • Svazek periodika

    64

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    6

  • Strana od-do

    405-410

  • Kód UT WoS článku

    000490241000001

  • EID výsledku v databázi Scopus