Impact of reference population and marker density on accuracy of population imputation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027014%3A_____%2F19%3AN0000168" target="_blank" >RIV/00027014:_____/19:N0000168 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.agriculturejournals.cz/publicFiles/148_2019-CJAS.pdf" target="_blank" >https://www.agriculturejournals.cz/publicFiles/148_2019-CJAS.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17221/148/2019-CJAS" target="_blank" >10.17221/148/2019-CJAS</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of reference population and marker density on accuracy of population imputation
Popis výsledku v původním jazyce
The effect of the reference population size and the number of missing single nucleotide polymorphisms (SNPs) on imputation accuracy was determined. The population imputation method using the FImpute software was applied. The dataset used for the purpose of this study was taken from the database of the Holstein Cattle Breeders Association of the Czech Republic. It contains 1000 animals genotyped with the Illumina BovineSNP50 v.2 BeadChip. Two datasets were created, the first containing the original genotypes, including the missing SNPs, the second containing the same genotypes modified to avoid missing data. In these datasets, animals were randomly selected for a reference population (10, 25, 50 and 75%) and there were randomly selected SNPs for deletion (15, 30, 55, 70, and 95%) in animals that were not used as the reference population. Subsequently, the data accuracy was determined by two parameters: correlation between original and imputed SNPs and percentage of correctly imputed SNPs. Since animals and SNPs were randomly selected, the process including data imputation was repeated 100 times. Accuracy was determined as the average accuracy over all repetitions. It was found that the imputation accuracy is influenced by both parameters. If the size of the reference population is sufficient, the imputation accuracy is higher despite the large number of missing SNPs.
Název v anglickém jazyce
Impact of reference population and marker density on accuracy of population imputation
Popis výsledku anglicky
The effect of the reference population size and the number of missing single nucleotide polymorphisms (SNPs) on imputation accuracy was determined. The population imputation method using the FImpute software was applied. The dataset used for the purpose of this study was taken from the database of the Holstein Cattle Breeders Association of the Czech Republic. It contains 1000 animals genotyped with the Illumina BovineSNP50 v.2 BeadChip. Two datasets were created, the first containing the original genotypes, including the missing SNPs, the second containing the same genotypes modified to avoid missing data. In these datasets, animals were randomly selected for a reference population (10, 25, 50 and 75%) and there were randomly selected SNPs for deletion (15, 30, 55, 70, and 95%) in animals that were not used as the reference population. Subsequently, the data accuracy was determined by two parameters: correlation between original and imputed SNPs and percentage of correctly imputed SNPs. Since animals and SNPs were randomly selected, the process including data imputation was repeated 100 times. Accuracy was determined as the average accuracy over all repetitions. It was found that the imputation accuracy is influenced by both parameters. If the size of the reference population is sufficient, the imputation accuracy is higher despite the large number of missing SNPs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40203 - Husbandry
Návaznosti výsledku
Projekt
<a href="/cs/project/QK1810253" target="_blank" >QK1810253: Navýšení spolehlivosti celostátního genomického hodnocení dojeného skotu zařazením krav s domácí užitkovostí do genotypované referenční populace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Czech Journal of Animal Science
ISSN
1212-1819
e-ISSN
—
Svazek periodika
64
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
6
Strana od-do
405-410
Kód UT WoS článku
000490241000001
EID výsledku v databázi Scopus
—