Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Creation of detailed soil properties maps of the Czech Republic based on national legacy data and digital soil mapping

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027049%3A_____%2F20%3AN0000127" target="_blank" >RIV/00027049:_____/20:N0000127 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Creation of detailed soil properties maps of the Czech Republic based on national legacy data and digital soil mapping

  • Popis výsledku v původním jazyce

    Legacy soil data arising from traditional soil surveys are an important resource for digital soil mapping. In the Czech Republic, a large-scale (1:10 000) mapping of agricultural land was completed in 1970 after a decade of field investigation mapping. It represents a worldwide unique database of soil samples by its national extent and detail. This study aimed to create a detailed map of soil properties (organic carbon, ph, texture, soil unit) by using state-of-the-art digital soil mapping (DSM) methods. For this purpose we chose four geomorphologically different areas (2440 km2 in total). A selected ensemble machine learning techniques based on bagging, boosting and stacking with random hyperparameters tuning were used to model each soil property. In addition to soil sample data, a DEM and its derivatives were used as common covariate layers. The models were evaluated using both internal repeated cross-validation and external validation. The best model was used for prediction of soil properties. The accuracy of prediction models is comparable with other studies. The resulting maps were also compared with the available original soil maps of the Czech Republic. The new maps reveal more spatial detail and natural variability of soil properties resulting from the use of DEM. This combination of high detailed legacy data with DSM results in the production of more spatially detailed and accurate maps, which may be particularly beneficial in supporting the decision-making of stakeholders.

  • Název v anglickém jazyce

    Creation of detailed soil properties maps of the Czech Republic based on national legacy data and digital soil mapping

  • Popis výsledku anglicky

    Legacy soil data arising from traditional soil surveys are an important resource for digital soil mapping. In the Czech Republic, a large-scale (1:10 000) mapping of agricultural land was completed in 1970 after a decade of field investigation mapping. It represents a worldwide unique database of soil samples by its national extent and detail. This study aimed to create a detailed map of soil properties (organic carbon, ph, texture, soil unit) by using state-of-the-art digital soil mapping (DSM) methods. For this purpose we chose four geomorphologically different areas (2440 km2 in total). A selected ensemble machine learning techniques based on bagging, boosting and stacking with random hyperparameters tuning were used to model each soil property. In addition to soil sample data, a DEM and its derivatives were used as common covariate layers. The models were evaluated using both internal repeated cross-validation and external validation. The best model was used for prediction of soil properties. The accuracy of prediction models is comparable with other studies. The resulting maps were also compared with the available original soil maps of the Czech Republic. The new maps reveal more spatial detail and natural variability of soil properties resulting from the use of DEM. This combination of high detailed legacy data with DSM results in the production of more spatially detailed and accurate maps, which may be particularly beneficial in supporting the decision-making of stakeholders.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    40104 - Soil science

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/QK1820389" target="_blank" >QK1820389: Vytvoření podrobných aktuálních map půdních vlastností ČR na základě využití dat Komplexního průzkumu půd a metod digitálního mapování půd</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů