High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027049%3A_____%2F22%3AN0000019" target="_blank" >RIV/00027049:_____/22:N0000019 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41210/22:92273
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0341816222000108" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0341816222000108</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.catena.2022.106024" target="_blank" >10.1016/j.catena.2022.106024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic
Popis výsledku v původním jazyce
Detailed maps of soil properties are essential for soil protection planning and management; however, creating very high-resolution maps at the national level with sufficient accuracy is a challenging task and remains unavailable for most countries. For the Czech Republic, very high resolution (20 m⋅pixel???? 1) soil property maps (soil organic carbon—SOC, texture, pH, bulk density, soil depth) were created using digital soil mapping methods, combined with a wide database of soil legacy and current samples. The latest approaches were employed for predictive mapping: a quantile random forest model with the determination of prediction intervals, a mosaic of bare soils from Sentinel-2 satellite data, a Gaussian pyramid of terrain attributes, and a buffer distance map. These variables were found to be among the most important in the resulting models. The properties were mapped with an RMSE accuracy of 0.43% SOC, 5.56–11.14% for texture fractions, 0.70 pH, 0.13 g⋅cm???? 3 bulk density, and 20.03 cm for soil depth, thus providing detailed data on soil cover. Greater levels of inaccuracy were found in areas with extreme values, for which further investigation is necessary either through more detailed sampling based on active learning, or adapted methods for enhanced predictive ability.
Název v anglickém jazyce
High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic
Popis výsledku anglicky
Detailed maps of soil properties are essential for soil protection planning and management; however, creating very high-resolution maps at the national level with sufficient accuracy is a challenging task and remains unavailable for most countries. For the Czech Republic, very high resolution (20 m⋅pixel???? 1) soil property maps (soil organic carbon—SOC, texture, pH, bulk density, soil depth) were created using digital soil mapping methods, combined with a wide database of soil legacy and current samples. The latest approaches were employed for predictive mapping: a quantile random forest model with the determination of prediction intervals, a mosaic of bare soils from Sentinel-2 satellite data, a Gaussian pyramid of terrain attributes, and a buffer distance map. These variables were found to be among the most important in the resulting models. The properties were mapped with an RMSE accuracy of 0.43% SOC, 5.56–11.14% for texture fractions, 0.70 pH, 0.13 g⋅cm???? 3 bulk density, and 20.03 cm for soil depth, thus providing detailed data on soil cover. Greater levels of inaccuracy were found in areas with extreme values, for which further investigation is necessary either through more detailed sampling based on active learning, or adapted methods for enhanced predictive ability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Catena
ISSN
0341-8162
e-ISSN
—
Svazek periodika
2022
Číslo periodika v rámci svazku
212
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
106024
Kód UT WoS článku
000791995200001
EID výsledku v databázi Scopus
2-s2.0-85122989943