Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Soil sampling design matters - Enhancing the efficiency of digital soil mapping at the field scale

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027049%3A_____%2F24%3AN0000088" target="_blank" >RIV/00027049:_____/24:N0000088 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60460709:41210/24:98439 RIV/62156489:43210/24:43925800

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2352009424001214" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352009424001214</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.geodrs.2024.e00874" target="_blank" >10.1016/j.geodrs.2024.e00874</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Soil sampling design matters - Enhancing the efficiency of digital soil mapping at the field scale

  • Popis výsledku v původním jazyce

    Sample size optimisation remains a key challenge in digital soil mapping, especially in the area of precision farming with the expected economic benefits from the introduction of new technologies. As the existing information is available in the form of relevant environmental covariates, its combination with non-parametric machine learning techniques requires careful planning from the initial field sampling to the final production of digital soil maps. The aim of this study is to compare widely used covariate-wise sampling designs combined with variable sample sizes for supervised prediction of common soil drivers of agricultural productivity (pH, soil organic carbon, soil macronutrients) in a real case study of a field (35 ha) with heterogeneous soil properties. From a total of 200 samples, we evaluated different sample sets where 10, 30 and 60 field samples were selected by conditioned Latin Hypercube Sampling (cLHS) and Feature Space Coverage Sampling (FSCS) to calibrate random forest (RF) models. The evaluation was performed on independently in-situ sampled test points. In addition to these datasets, we also compared the investigated methods with Simple Random Sampling (SRS) in a numerical benchmark experiment with increasing sample size, comparing the global accuracies of the predicted maps on the test points, but using interpolated maps as the artificial true population for each soil characteristic. The results of the study in both the field experiment and the numerical experiment showed slightly better results for the FSCS method, especially when the number of samples was small. At smaller training sample sizes, the risk of insufficiently accurate prediction models was slightly lower for FSCS and the difference decreased as the sample size increased. Nevertheless, sample size proved to be the most important factor in the accuracy of RF models, regardless of the sampling technique. The results suggest that a sample size between 18 and 30 training samples (0.6 to 1 sample ha-1) seems plausible for covariate-wise predictions using RF at field scale in our case study. The relative importance of each auxiliary variable for each RF calibration was also assessed for the field experiment. The results showed that the additional introduction of spatial proxies overshadowed the importance of other covariates, but only significantly improved the model calibration at larger sample sizes. The calibrated models without spatial proxies showed the strongest effect of remotely sensed surface characteristics.

  • Název v anglickém jazyce

    Soil sampling design matters - Enhancing the efficiency of digital soil mapping at the field scale

  • Popis výsledku anglicky

    Sample size optimisation remains a key challenge in digital soil mapping, especially in the area of precision farming with the expected economic benefits from the introduction of new technologies. As the existing information is available in the form of relevant environmental covariates, its combination with non-parametric machine learning techniques requires careful planning from the initial field sampling to the final production of digital soil maps. The aim of this study is to compare widely used covariate-wise sampling designs combined with variable sample sizes for supervised prediction of common soil drivers of agricultural productivity (pH, soil organic carbon, soil macronutrients) in a real case study of a field (35 ha) with heterogeneous soil properties. From a total of 200 samples, we evaluated different sample sets where 10, 30 and 60 field samples were selected by conditioned Latin Hypercube Sampling (cLHS) and Feature Space Coverage Sampling (FSCS) to calibrate random forest (RF) models. The evaluation was performed on independently in-situ sampled test points. In addition to these datasets, we also compared the investigated methods with Simple Random Sampling (SRS) in a numerical benchmark experiment with increasing sample size, comparing the global accuracies of the predicted maps on the test points, but using interpolated maps as the artificial true population for each soil characteristic. The results of the study in both the field experiment and the numerical experiment showed slightly better results for the FSCS method, especially when the number of samples was small. At smaller training sample sizes, the risk of insufficiently accurate prediction models was slightly lower for FSCS and the difference decreased as the sample size increased. Nevertheless, sample size proved to be the most important factor in the accuracy of RF models, regardless of the sampling technique. The results suggest that a sample size between 18 and 30 training samples (0.6 to 1 sample ha-1) seems plausible for covariate-wise predictions using RF at field scale in our case study. The relative importance of each auxiliary variable for each RF calibration was also assessed for the field experiment. The results showed that the additional introduction of spatial proxies overshadowed the importance of other covariates, but only significantly improved the model calibration at larger sample sizes. The calibrated models without spatial proxies showed the strongest effect of remotely sensed surface characteristics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40104 - Soil science

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/QK21010247" target="_blank" >QK21010247: Optimalizace hospodaření na nevyrovnaných pozemcích využitím efektivního mapování půdních podmínek a zohlednění změn vláhových poměrů s cílem stabilizace dosahovaných výnosových úrovní</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Geoderma Regional

  • ISSN

    2352-0094

  • e-ISSN

    2352-0094

  • Svazek periodika

    39

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    e00874

  • Kód UT WoS článku

    001332424500001

  • EID výsledku v databázi Scopus