Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Towards effective sampling for nutrients’ predictive mapping in farm-scale crop management

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027049%3A_____%2F23%3AN0000071" target="_blank" >RIV/00027049:_____/23:N0000071 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00027049:_____/23:N0000063

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Towards effective sampling for nutrients’ predictive mapping in farm-scale crop management

  • Popis výsledku v původním jazyce

    Plant nutrition and balanced fertilisation require highly accurate field information with limited sampling. Therefore, the optimisation of sampling schemes is crucial. The aim of the study is to compare the widely used sampling designs combined with variable sample size for supervised prediction of common soil macronutrients. Conditioned Latin Hypercube Sampling (cLHS), Feature Space Coverage Sampling using k-means (FSCS) and Simple Random Sampling (SRS) were compared. The influence of sampling scheme and sample size on the accuracy of predicted nutrient maps was investigated in a real case study of a field (35 ha) with heterogeneous soil properties. A total of 200 training points were placed in 6 networks: cLHS and FSCS with 10, 30 and 60 samples each, corresponding to 1 sample per 3, 1 and 0.5 ha respectively. For the numerical experiment with the varying sampling rates, all 200 training samples were interpolated into a set of nutrient maps, which were treated as an error-free dataset for both calibration and validation samples included in the predictive modelling. Sampling networks of variable sample size from 2 to 60 were generated using the 80 SRS, cLHS and FSCS combined with a pragmatic suite of environmental covariates. Each network of each method was automatically generated 100 times using the same algorithm settings. These were used for covariate-driven models. The performance of the models was monitored. The results show the advantage of using the FSCS, which shows both less variation in the accuracy of the prediction compared to SRS and cLHS, and better results under sparse sampling.

  • Název v anglickém jazyce

    Towards effective sampling for nutrients’ predictive mapping in farm-scale crop management

  • Popis výsledku anglicky

    Plant nutrition and balanced fertilisation require highly accurate field information with limited sampling. Therefore, the optimisation of sampling schemes is crucial. The aim of the study is to compare the widely used sampling designs combined with variable sample size for supervised prediction of common soil macronutrients. Conditioned Latin Hypercube Sampling (cLHS), Feature Space Coverage Sampling using k-means (FSCS) and Simple Random Sampling (SRS) were compared. The influence of sampling scheme and sample size on the accuracy of predicted nutrient maps was investigated in a real case study of a field (35 ha) with heterogeneous soil properties. A total of 200 training points were placed in 6 networks: cLHS and FSCS with 10, 30 and 60 samples each, corresponding to 1 sample per 3, 1 and 0.5 ha respectively. For the numerical experiment with the varying sampling rates, all 200 training samples were interpolated into a set of nutrient maps, which were treated as an error-free dataset for both calibration and validation samples included in the predictive modelling. Sampling networks of variable sample size from 2 to 60 were generated using the 80 SRS, cLHS and FSCS combined with a pragmatic suite of environmental covariates. Each network of each method was automatically generated 100 times using the same algorithm settings. These were used for covariate-driven models. The performance of the models was monitored. The results show the advantage of using the FSCS, which shows both less variation in the accuracy of the prediction compared to SRS and cLHS, and better results under sparse sampling.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/QK21010247" target="_blank" >QK21010247: Optimalizace hospodaření na nevyrovnaných pozemcích využitím efektivního mapování půdních podmínek a zohlednění změn vláhových poměrů s cílem stabilizace dosahovaných výnosových úrovní</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů