Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Uncertainty in the detection of disturbance spatial patterns in temperate forests

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F16%3AN0000019" target="_blank" >RIV/00027073:_____/16:N0000019 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43410/16:43910762

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S1125786515000892" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1125786515000892</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dendro.2015.12.002" target="_blank" >10.1016/j.dendro.2015.12.002</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Uncertainty in the detection of disturbance spatial patterns in temperate forests

  • Popis výsledku v původním jazyce

    The use of individual-based models in the study of the spatial patterns of disturbances has opened new horizons in forest ecosystem research. However, no studies so far have addressed (i) the uncertainty in geostatistical modelling of the spatial relationships in dendrochronological data, (ii) the number of increment cores necessary to study disturbance spatial patterns, and (iii) the choice of an appropriate geostatistical model in relation to disturbance regime. In addressing these issues, we hope to contribute to advances in research methodology as well as to improve interpretations and generalizations from case studies. We used data from the beech-dominated Žofínský Prales forest reserve (Czech Republic), where we cored 3020 trees on 74 ha. Block bootstrap and geostatistics were applied to the data, which covered five decades with highly different disturbance histories. This allowed us to assess the general behavior of various mathematical models. Uncertainty in the spatial patterns and stability of the models was measured as the length of the 95% confidence interval (CI) of model parameters. The results suggest that with a sample size of 1000–1400 cores and a properly chosen model, one reaches a certain precision in estimation that does not increase significantly with growing sample size. It appears that in temperate old-growth forests controlled by fine-scale disturbances, it is necessary to have at least 500 cores to estimate sill, nugget and relative nugget, while to estimate practical range at least 1000 cores are needed. When choosing the best model, the stability of the model should be considered together with the value of AIC. Our results indicate the general limits of disturbance spatial pattern studies using dendrochronological and geostatistical methods, which can be only partially overcome by sample size or sampling design.

  • Název v anglickém jazyce

    Uncertainty in the detection of disturbance spatial patterns in temperate forests

  • Popis výsledku anglicky

    The use of individual-based models in the study of the spatial patterns of disturbances has opened new horizons in forest ecosystem research. However, no studies so far have addressed (i) the uncertainty in geostatistical modelling of the spatial relationships in dendrochronological data, (ii) the number of increment cores necessary to study disturbance spatial patterns, and (iii) the choice of an appropriate geostatistical model in relation to disturbance regime. In addressing these issues, we hope to contribute to advances in research methodology as well as to improve interpretations and generalizations from case studies. We used data from the beech-dominated Žofínský Prales forest reserve (Czech Republic), where we cored 3020 trees on 74 ha. Block bootstrap and geostatistics were applied to the data, which covered five decades with highly different disturbance histories. This allowed us to assess the general behavior of various mathematical models. Uncertainty in the spatial patterns and stability of the models was measured as the length of the 95% confidence interval (CI) of model parameters. The results suggest that with a sample size of 1000–1400 cores and a properly chosen model, one reaches a certain precision in estimation that does not increase significantly with growing sample size. It appears that in temperate old-growth forests controlled by fine-scale disturbances, it is necessary to have at least 500 cores to estimate sill, nugget and relative nugget, while to estimate practical range at least 1000 cores are needed. When choosing the best model, the stability of the model should be considered together with the value of AIC. Our results indicate the general limits of disturbance spatial pattern studies using dendrochronological and geostatistical methods, which can be only partially overcome by sample size or sampling design.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    GK - Lesnictví

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    DENDROCHRONOLOGIA

  • ISSN

    1125-7865

  • e-ISSN

  • Svazek periodika

    37

  • Číslo periodika v rámci svazku

    March 2016

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    11

  • Strana od-do

    46-56

  • Kód UT WoS článku

    000386868300005

  • EID výsledku v databázi Scopus