Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bioindication and modelling of atmospheric deposition in forests enable exposure and effect monitoring at high spatial density across scales

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F17%3AN0000091" target="_blank" >RIV/00027073:_____/17:N0000091 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007%2Fs13595-017-0621-6" target="_blank" >https://link.springer.com/article/10.1007%2Fs13595-017-0621-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13595-017-0621-6" target="_blank" >10.1007/s13595-017-0621-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bioindication and modelling of atmospheric deposition in forests enable exposure and effect monitoring at high spatial density across scales

  • Popis výsledku v původním jazyce

    For enhancing the spatial resolution of measuring and mapping atmospheric deposition by technical devices and by modelling, moss is used complementarily as bio-monitor. This paper investigated whether nitrogen and heavy metal concentrations derived by biomonitoring of atmospheric deposition are statistically meaningful in terms of compliance with minimum sample size across several spatial levels (objective 1), whether this is also true in terms of geostatistical criteria such as spatial auto-correlation and, by this, estimated values for unsampled locations (objective 2) and whether moss indicates atmospheric deposition in a similar way as modelled deposition, tree foliage and natural surface soil at the European and country level, and whether they indicate site-specific variance due to canopy drip (objective 3). Data from modelling and biomonitoring atmospheric deposition were statistically analysed by means of minimum sample size calculation, by geostatistics as well as by bivariate correlation analyses and by multivariate correlation analyses using the Classification and Regression Tree approach and the Random Forests method. It was found that the compliance of measurements with the minimum sample size varies by spatial scale and element measured. For unsampled locations, estimation could be derived. Statistically significant correlations between concentrations of heavy metals and nitrogen in moss and modelled atmospheric deposition, and concentrations in leaves, needles and soil were found. Significant influence of canopy drip on nitrogen concentration in moss was proven. Moss surveys should complement modelled atmospheric deposition data as well as other biomonitoring approaches and offer a great potential for various terrestrial monitoring programmes dealing with exposure and effects.

  • Název v anglickém jazyce

    Bioindication and modelling of atmospheric deposition in forests enable exposure and effect monitoring at high spatial density across scales

  • Popis výsledku anglicky

    For enhancing the spatial resolution of measuring and mapping atmospheric deposition by technical devices and by modelling, moss is used complementarily as bio-monitor. This paper investigated whether nitrogen and heavy metal concentrations derived by biomonitoring of atmospheric deposition are statistically meaningful in terms of compliance with minimum sample size across several spatial levels (objective 1), whether this is also true in terms of geostatistical criteria such as spatial auto-correlation and, by this, estimated values for unsampled locations (objective 2) and whether moss indicates atmospheric deposition in a similar way as modelled deposition, tree foliage and natural surface soil at the European and country level, and whether they indicate site-specific variance due to canopy drip (objective 3). Data from modelling and biomonitoring atmospheric deposition were statistically analysed by means of minimum sample size calculation, by geostatistics as well as by bivariate correlation analyses and by multivariate correlation analyses using the Classification and Regression Tree approach and the Random Forests method. It was found that the compliance of measurements with the minimum sample size varies by spatial scale and element measured. For unsampled locations, estimation could be derived. Statistically significant correlations between concentrations of heavy metals and nitrogen in moss and modelled atmospheric deposition, and concentrations in leaves, needles and soil were found. Significant influence of canopy drip on nitrogen concentration in moss was proven. Moss surveys should complement modelled atmospheric deposition data as well as other biomonitoring approaches and offer a great potential for various terrestrial monitoring programmes dealing with exposure and effects.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of Forest Science

  • ISSN

    1286-4560

  • e-ISSN

    1297-966X

  • Svazek periodika

    74

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    23

  • Strana od-do

    nestránkováno

  • Kód UT WoS článku

    000405798400001

  • EID výsledku v databázi Scopus