Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using an ensemble model coupled with portable X-ray fluorescence and visible near-infrared spectroscopy to explore the viability of mapping and estimating arsenic in an agricultural soil

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F22%3AN0000114" target="_blank" >RIV/00027073:_____/22:N0000114 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60460709:41210/22:91009 RIV/60460709:41330/22:91009

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0048969721068819" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0048969721068819</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2021.151805" target="_blank" >10.1016/j.scitotenv.2021.151805</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using an ensemble model coupled with portable X-ray fluorescence and visible near-infrared spectroscopy to explore the viability of mapping and estimating arsenic in an agricultural soil

  • Popis výsledku v původním jazyce

    Increasing concentrations of potentially toxic elements (PTE) in agricultural soils remain a major source of public concern. Monitoring PTEs in an agricultural field with no history of contaminants necessitate adequate analysis utilizing a robust model to accurately uncover hidden PTEs. Detecting and mapping the distribution of soil properties using portable X-ray fluorescence (pXRF) and proximal sensing techniques is not only rapid, but also relatively inexpensive. In this study, an ensemble model, consisting of partial least square regression (PLSR), support vector machine (SVM), random forest (RF) and cubist, was used for the prediction and mapping of soil As content in an agricultural field with no history of pollution. The datasets were collected using pXRF and field spectroscopy techniques. The main goal was to compare the ensemble model to each of the calibration techniques in terms of prediction accuracy of As content in such a field. Other components [eg., soil organic carbon (SOC), Mn, S, soil pH, Fe] that are known to influence As levels in the soil were also retrieved to assess their correlation with soil As. The models were evaluated using the root mean squared error (RMSECV), the coefficient of determination (R-CV(2)) and the ratio of performance to interquartile range (RPIQ). In terms of prediction accuracy, the ensemble model outperformed each of the individual techniques (R-CV(2) = 0.80/0.75) and obtained the least error margin (RMSECV = 1.91/2.16). Overall, all the predictive techniques were able to detect both low and high estimated values of soil As within the study field, but with the ensemble model resembling the measurements better. The ensemble model, a promising tool as demonstrated by the current study, is highly recommended to be included in future studies for more accurate estimation of As and other FTEs in other agricultural fields.

  • Název v anglickém jazyce

    Using an ensemble model coupled with portable X-ray fluorescence and visible near-infrared spectroscopy to explore the viability of mapping and estimating arsenic in an agricultural soil

  • Popis výsledku anglicky

    Increasing concentrations of potentially toxic elements (PTE) in agricultural soils remain a major source of public concern. Monitoring PTEs in an agricultural field with no history of contaminants necessitate adequate analysis utilizing a robust model to accurately uncover hidden PTEs. Detecting and mapping the distribution of soil properties using portable X-ray fluorescence (pXRF) and proximal sensing techniques is not only rapid, but also relatively inexpensive. In this study, an ensemble model, consisting of partial least square regression (PLSR), support vector machine (SVM), random forest (RF) and cubist, was used for the prediction and mapping of soil As content in an agricultural field with no history of pollution. The datasets were collected using pXRF and field spectroscopy techniques. The main goal was to compare the ensemble model to each of the calibration techniques in terms of prediction accuracy of As content in such a field. Other components [eg., soil organic carbon (SOC), Mn, S, soil pH, Fe] that are known to influence As levels in the soil were also retrieved to assess their correlation with soil As. The models were evaluated using the root mean squared error (RMSECV), the coefficient of determination (R-CV(2)) and the ratio of performance to interquartile range (RPIQ). In terms of prediction accuracy, the ensemble model outperformed each of the individual techniques (R-CV(2) = 0.80/0.75) and obtained the least error margin (RMSECV = 1.91/2.16). Overall, all the predictive techniques were able to detect both low and high estimated values of soil As within the study field, but with the ensemble model resembling the measurements better. The ensemble model, a promising tool as demonstrated by the current study, is highly recommended to be included in future studies for more accurate estimation of As and other FTEs in other agricultural fields.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40104 - Soil science

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Science of The Total Environment

  • ISSN

    0048-9697

  • e-ISSN

    1879-1026

  • Svazek periodika

    818

  • Číslo periodika v rámci svazku

    20 April 2022

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    151805

  • Kód UT WoS článku

    000804813500005

  • EID výsledku v databázi Scopus

    2-s2.0-85119897320