Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Examining the influence of bare soil UAV imagery combined with auxiliary datasets to estimate and map soil organic carbon distribution in an erosion-prone agricultural field

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F23%3A96608" target="_blank" >RIV/60460709:41210/23:96608 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43410/23:43923010 RIV/00027073:_____/23:N0000071

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0048969723005880" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969723005880</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2023.161973" target="_blank" >10.1016/j.scitotenv.2023.161973</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Examining the influence of bare soil UAV imagery combined with auxiliary datasets to estimate and map soil organic carbon distribution in an erosion-prone agricultural field

  • Popis výsledku v původním jazyce

    Soil organic content (SOC), an indicator of soil fertility, can be estimated quickly and accurately with remote sensing (RS) datasets; however, the issue of vegetation cover on the field still remains a major concern. In order to minimize the effects of vegetation cover, studies relating reflectance spectra to SOC may require bare soil. However, acquiring satellite images devoid of vegetation is still an enormous challenge for RS techniques. This is because the area that may have been accurately predicted at a targeted date is sometimes limited since many pixels are covered by vegeta-tion. The study goal was to assess the impact of using UAV-borne imagery coupled with auxiliary datasets, which in-clude spectral indices (SPIs) and terrain attributes (TAs) (at 20 cm and 30 m resolution), singly or merged, to estimate and map SOC in an erosion-prone agricultural field. Both field samples and UAV imagery were acquired while the fields were bare. Using a grid sampling design, 133 soil surface samples were collected. The models used include par-tial least square regression (PLSR), extreme gradient boosting (EGB), multivariate adaptive regression splines (MARS), and regularised random forest (RFF). The models were evaluated using the root mean squared error (RMSE), the co-efficient of determination (R2), ratio of performance to interquartile distance (RPIQ), and the mean absolute error (MAE). For prediction, the three merged datasets (R2val = 0.86, RMSEval = 0.13, MAEval = 0.11, RPIQval = 4.19) outperformed the best separate dataset (R2val = 0.82, RMSEval = 0.15, MAEval = 0.10, RPIQval = 2.08). Though all datasets detected both low and high estimates of soil SOC, the three merged datasets with EGB showed a less extreme prediction error. This study demonstrated that SOC can be estimated with high accuracy using completely bare soil UAV imagery with other auxiliary data, and it is thus highly recommended.

  • Název v anglickém jazyce

    Examining the influence of bare soil UAV imagery combined with auxiliary datasets to estimate and map soil organic carbon distribution in an erosion-prone agricultural field

  • Popis výsledku anglicky

    Soil organic content (SOC), an indicator of soil fertility, can be estimated quickly and accurately with remote sensing (RS) datasets; however, the issue of vegetation cover on the field still remains a major concern. In order to minimize the effects of vegetation cover, studies relating reflectance spectra to SOC may require bare soil. However, acquiring satellite images devoid of vegetation is still an enormous challenge for RS techniques. This is because the area that may have been accurately predicted at a targeted date is sometimes limited since many pixels are covered by vegeta-tion. The study goal was to assess the impact of using UAV-borne imagery coupled with auxiliary datasets, which in-clude spectral indices (SPIs) and terrain attributes (TAs) (at 20 cm and 30 m resolution), singly or merged, to estimate and map SOC in an erosion-prone agricultural field. Both field samples and UAV imagery were acquired while the fields were bare. Using a grid sampling design, 133 soil surface samples were collected. The models used include par-tial least square regression (PLSR), extreme gradient boosting (EGB), multivariate adaptive regression splines (MARS), and regularised random forest (RFF). The models were evaluated using the root mean squared error (RMSE), the co-efficient of determination (R2), ratio of performance to interquartile distance (RPIQ), and the mean absolute error (MAE). For prediction, the three merged datasets (R2val = 0.86, RMSEval = 0.13, MAEval = 0.11, RPIQval = 4.19) outperformed the best separate dataset (R2val = 0.82, RMSEval = 0.15, MAEval = 0.10, RPIQval = 2.08). Though all datasets detected both low and high estimates of soil SOC, the three merged datasets with EGB showed a less extreme prediction error. This study demonstrated that SOC can be estimated with high accuracy using completely bare soil UAV imagery with other auxiliary data, and it is thus highly recommended.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40104 - Soil science

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/SS02030018" target="_blank" >SS02030018: Centrum pro krajinu a biodiverzitu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

    0048-9697

  • Svazek periodika

    870

  • Číslo periodika v rámci svazku

    APR 20 2023

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    000964017100001

  • EID výsledku v databázi Scopus

    2-s2.0-85147549950