Impact of leaf phenology on estimates of aboveground biomass density in a deciduous broadleaf forest from simulated GEDI lidar
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F23%3AN0000015" target="_blank" >RIV/00027073:_____/23:N0000015 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1748-9326/acd2ec" target="_blank" >https://iopscience.iop.org/article/10.1088/1748-9326/acd2ec</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1748-9326/acd2ec" target="_blank" >10.1088/1748-9326/acd2ec</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of leaf phenology on estimates of aboveground biomass density in a deciduous broadleaf forest from simulated GEDI lidar
Popis výsledku v původním jazyce
The Global Ecosystem Dynamics Investigation (GEDI) is a waveform lidar instrument on the International Space Station used to estimate aboveground biomass density (AGBD) in temperate and tropical forests. Algorithms to predict footprint AGBD from GEDI relative height (RH) metrics were developed from simulated waveforms with leaf-on (growing season) conditions. Leaf-off GEDI data with lower canopy cover are expected to have shorter RH metrics, and are therefore excluded from GEDI's gridded AGBD products. However, the effects of leaf phenology on RH metric heights, and implications for GEDI footprint AGBD models that can include multiple nonlinear RH predictors, have not been quantified. Here, we test the sensitivity of GEDI data and AGBD predictions to leaf phenology. We simulated GEDI data using high-density drone lidar collected in a temperate mountain forest in the Czech Republic under leaf-off and leaf-on conditions, 51 d apart. We compared simulated GEDI RH metrics and footprint-level AGBD predictions from GEDI Level 4 A models from leaf-off and leaf-on datasets. Mean canopy cover increased by 31% from leaf-off to leaf-on conditions, from 57% to 88%. RH metrics < RH50 were more sensitive to changes in leaf phenology than RH metrics > RH50. Candidate AGBD models for the deciduous-broadleaf-trees prediction stratum in Europe that were trained using leaf-on measurements exhibited a systematic prediction difference of 0.6%-19% when applied to leaf-off data, as compared to leaf-on predictions. Models with the least systematic prediction difference contained only the highest RH metrics, or contained multiple predictor terms that contained both positive and negative coefficients, such that the difference from systematically shorter leaf-off RH metrics was partially offset among the multiple terms. These results suggest that, with consideration of model choice, leaf-off GEDI data can be suitable for AGBD prediction, which could increase data availability and reduce sampling error in some forests.
Název v anglickém jazyce
Impact of leaf phenology on estimates of aboveground biomass density in a deciduous broadleaf forest from simulated GEDI lidar
Popis výsledku anglicky
The Global Ecosystem Dynamics Investigation (GEDI) is a waveform lidar instrument on the International Space Station used to estimate aboveground biomass density (AGBD) in temperate and tropical forests. Algorithms to predict footprint AGBD from GEDI relative height (RH) metrics were developed from simulated waveforms with leaf-on (growing season) conditions. Leaf-off GEDI data with lower canopy cover are expected to have shorter RH metrics, and are therefore excluded from GEDI's gridded AGBD products. However, the effects of leaf phenology on RH metric heights, and implications for GEDI footprint AGBD models that can include multiple nonlinear RH predictors, have not been quantified. Here, we test the sensitivity of GEDI data and AGBD predictions to leaf phenology. We simulated GEDI data using high-density drone lidar collected in a temperate mountain forest in the Czech Republic under leaf-off and leaf-on conditions, 51 d apart. We compared simulated GEDI RH metrics and footprint-level AGBD predictions from GEDI Level 4 A models from leaf-off and leaf-on datasets. Mean canopy cover increased by 31% from leaf-off to leaf-on conditions, from 57% to 88%. RH metrics < RH50 were more sensitive to changes in leaf phenology than RH metrics > RH50. Candidate AGBD models for the deciduous-broadleaf-trees prediction stratum in Europe that were trained using leaf-on measurements exhibited a systematic prediction difference of 0.6%-19% when applied to leaf-off data, as compared to leaf-on predictions. Models with the least systematic prediction difference contained only the highest RH metrics, or contained multiple predictor terms that contained both positive and negative coefficients, such that the difference from systematically shorter leaf-off RH metrics was partially offset among the multiple terms. These results suggest that, with consideration of model choice, leaf-off GEDI data can be suitable for AGBD prediction, which could increase data availability and reduce sampling error in some forests.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA18200" target="_blank" >LTAUSA18200: Porozumění struktuře a dynamice temperátních lesů severní hemisféry – Úvod do třetího rozměru</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Environmental Research Letters
ISSN
1748-9326
e-ISSN
1748-9326
Svazek periodika
18
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
065009
Kód UT WoS článku
000999943400001
EID výsledku v databázi Scopus
2-s2.0-85161715486