LiDAR GEDI derived tree canopy height heterogeneity reveals patterns of biodiversity in forest ecosystems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F23%3A97562" target="_blank" >RIV/60460709:41330/23:97562 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ecoinf.2023.102082" target="_blank" >http://dx.doi.org/10.1016/j.ecoinf.2023.102082</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecoinf.2023.102082" target="_blank" >10.1016/j.ecoinf.2023.102082</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LiDAR GEDI derived tree canopy height heterogeneity reveals patterns of biodiversity in forest ecosystems
Popis výsledku v původním jazyce
The Height Variation Hypothesis is an indirect approach used to estimate forest biodiversity through remote sensing data, stating that greater tree height heterogeneity (HH) measured by CHM LiDAR data indicates higher forest structure complexity and tree species diversity. This approach has traditionally been analyzed using only airborne LiDAR data, which limits its application to the availability of the dedicated flight campaigns. In this study we analyzed the relationship between tree species diversity and HH, calculated with four different heterogeneity indices using two freely available CHMs derived from the new space-borne GEDI LiDAR data. The first, with a spatial resolution of 30 m, was produced through a regression tree machine learning algorithm integrating GEDI LiDAR data and Landsat optical information. The second, with a spatial resolution of 10 m, was created using Sentinel-2 images and a deep learning convolutional neural network. We tested this approach separately in 30 forest plots situated in the northern Italian Alps, in 100 plots in the forested area of Traunstein (Germany) and successively in all the 130 plots through a cross-validation analysis. Forest density information was also included as influencing factor in a multiple regression analysis. Our results show that the GEDI CHMs can be used to assess biodiversity patterns in forest ecosystems through the estimation of the HH that is correlated to the tree species diversity. However, the results also indicate that this method is influenced by different factors including the GEDI CHMs dataset of choice and their related spatial resolution, the heterogeneity indices used to calculate the HH and the forest density. Our finding suggest that GEDI LIDAR data can be a valuable tool in the estimation of forest tree heterogeneity and related tree species diversity in forest ecosystems, which can aid in global biodiversity estimation.
Název v anglickém jazyce
LiDAR GEDI derived tree canopy height heterogeneity reveals patterns of biodiversity in forest ecosystems
Popis výsledku anglicky
The Height Variation Hypothesis is an indirect approach used to estimate forest biodiversity through remote sensing data, stating that greater tree height heterogeneity (HH) measured by CHM LiDAR data indicates higher forest structure complexity and tree species diversity. This approach has traditionally been analyzed using only airborne LiDAR data, which limits its application to the availability of the dedicated flight campaigns. In this study we analyzed the relationship between tree species diversity and HH, calculated with four different heterogeneity indices using two freely available CHMs derived from the new space-borne GEDI LiDAR data. The first, with a spatial resolution of 30 m, was produced through a regression tree machine learning algorithm integrating GEDI LiDAR data and Landsat optical information. The second, with a spatial resolution of 10 m, was created using Sentinel-2 images and a deep learning convolutional neural network. We tested this approach separately in 30 forest plots situated in the northern Italian Alps, in 100 plots in the forested area of Traunstein (Germany) and successively in all the 130 plots through a cross-validation analysis. Forest density information was also included as influencing factor in a multiple regression analysis. Our results show that the GEDI CHMs can be used to assess biodiversity patterns in forest ecosystems through the estimation of the HH that is correlated to the tree species diversity. However, the results also indicate that this method is influenced by different factors including the GEDI CHMs dataset of choice and their related spatial resolution, the heterogeneity indices used to calculate the HH and the forest density. Our finding suggest that GEDI LIDAR data can be a valuable tool in the estimation of forest tree heterogeneity and related tree species diversity in forest ecosystems, which can aid in global biodiversity estimation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ecological Informatics
ISSN
1574-9541
e-ISSN
1574-9541
Svazek periodika
76
Číslo periodika v rámci svazku
102082
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000978896500001
EID výsledku v databázi Scopus
2-s2.0-85151708441