Testing the Height Variation Hypothesis with the R rasterdiv Package for Tree Species Diversity Estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F21%3A87037" target="_blank" >RIV/60460709:41330/21:87037 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2072-4292/13/18/3569" target="_blank" >https://www.mdpi.com/2072-4292/13/18/3569</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs13183569" target="_blank" >10.3390/rs13183569</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Testing the Height Variation Hypothesis with the R rasterdiv Package for Tree Species Diversity Estimation
Popis výsledku v původním jazyce
Forest biodiversity is a key element to support ecosystem functions. Measuring biodiversity is a necessary step to identify critical issues and to choose interventions to be applied in order to protect it. Remote sensing provides consistent quality and standardized data, which can be used to estimate different aspects of biodiversity. The Height Variation Hypothesis (HVH) represents an indirect method for estimating species diversity in forest ecosystems from the LiDAR data, and it assumes that the higher the variation in tree height (height heterogeneity, HH), calculated through the Canopy Height Model (CHM) metric, the more complex the overall structure of the forest and the higher the tree species diversity. To date, the HVH has been tested exclusively with CHM data, assessing the HH only with a single heterogeneity index (the Raos Q index) without making use of any moving windows (MW) approach. In this study, the HVH has been tested in an alpine coniferous forest situated in the municipality of S
Název v anglickém jazyce
Testing the Height Variation Hypothesis with the R rasterdiv Package for Tree Species Diversity Estimation
Popis výsledku anglicky
Forest biodiversity is a key element to support ecosystem functions. Measuring biodiversity is a necessary step to identify critical issues and to choose interventions to be applied in order to protect it. Remote sensing provides consistent quality and standardized data, which can be used to estimate different aspects of biodiversity. The Height Variation Hypothesis (HVH) represents an indirect method for estimating species diversity in forest ecosystems from the LiDAR data, and it assumes that the higher the variation in tree height (height heterogeneity, HH), calculated through the Canopy Height Model (CHM) metric, the more complex the overall structure of the forest and the higher the tree species diversity. To date, the HVH has been tested exclusively with CHM data, assessing the HH only with a single heterogeneity index (the Raos Q index) without making use of any moving windows (MW) approach. In this study, the HVH has been tested in an alpine coniferous forest situated in the municipality of S
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
2072-4292
Svazek periodika
13
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
000701547200001
EID výsledku v databázi Scopus
2-s2.0-85114678535