Height variation hypothesis: A new approach for estimating forest species diversity with CHM LiDAR data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F20%3A82301" target="_blank" >RIV/60460709:41330/20:82301 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1470160X2030457X?dgcid=rss_sd_all" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1470160X2030457X?dgcid=rss_sd_all</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecolind.2020.106520" target="_blank" >10.1016/j.ecolind.2020.106520</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Height variation hypothesis: A new approach for estimating forest species diversity with CHM LiDAR data
Popis výsledku v původním jazyce
An indirect method for estimating biodiversity from Earth observations is the Spectral Variation Hypothesis SVH. SVH states that the higher the spatial variability of the spectral response of an optical remotely sensed image, the higher the number of available ecological niches and hence, the higher the diversity of tree species in the considered area. Here for the first time we apply the concept of the SVH to Light Detection and Ranging LiDAR data to understand the relationship between the height heterogeneity HH of a forest and its tree species diversity, a concept we have named the Height Variation Hypothesis HVH. We tested HVH in two different European forest types a coniferous mountain forest in the eastern Italian Alps and a mixed temperate forest in southern Germany. We used the heterogeneity index Raos Q to estimate HH using a Canopy Height ModelCHM at different resolutions derived from LiDAR data, and linear regression models and relation analysis to assess the relationships between HH and t
Název v anglickém jazyce
Height variation hypothesis: A new approach for estimating forest species diversity with CHM LiDAR data
Popis výsledku anglicky
An indirect method for estimating biodiversity from Earth observations is the Spectral Variation Hypothesis SVH. SVH states that the higher the spatial variability of the spectral response of an optical remotely sensed image, the higher the number of available ecological niches and hence, the higher the diversity of tree species in the considered area. Here for the first time we apply the concept of the SVH to Light Detection and Ranging LiDAR data to understand the relationship between the height heterogeneity HH of a forest and its tree species diversity, a concept we have named the Height Variation Hypothesis HVH. We tested HVH in two different European forest types a coniferous mountain forest in the eastern Italian Alps and a mixed temperate forest in southern Germany. We used the heterogeneity index Raos Q to estimate HH using a Canopy Height ModelCHM at different resolutions derived from LiDAR data, and linear regression models and relation analysis to assess the relationships between HH and t
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ECOLOGICAL INDICATORS
ISSN
1470-160X
e-ISSN
1872-7034
Svazek periodika
2020
Číslo periodika v rámci svazku
117
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
000555557300010
EID výsledku v databázi Scopus
2-s2.0-85085268487