Estimating tree species diversity from space in an alpine conifer forest: The Rao's Q diversity index meets the spectral variation hypothesis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F19%3A79752" target="_blank" >RIV/60460709:41330/19:79752 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1574954119300561?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1574954119300561?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecoinf.2019.04.001" target="_blank" >10.1016/j.ecoinf.2019.04.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating tree species diversity from space in an alpine conifer forest: The Rao's Q diversity index meets the spectral variation hypothesis
Popis výsledku v původním jazyce
Forests cover about 30 of the Earth surface, they are among the most biodiverse terrestrial ecosystems and represent the bulk of many ecological processes and services. The assessment of biodiversity is an important and essential goal to achieve but it can results difficult, time consuming and expensive when based on field data. Remote sensing covers large areas and provides consistent quality and standardized data, which can be used to estimate species diversity. One method to estimate species diversity from remote sensing data is based on the Spectral Variation Hypothesis (SVH), which assumes that the higher the spectral variation of an image, the higher the environmental heterogeneity and the species diversity of the considered area. SVH has been tested using different spectral heterogeneity (SH) indices and measures, recently the Raos Q index has been proposed as a new spectral variation measure to be applied to remote sensing data. In this paper, we tested the SVH in an alpine coniferous forest
Název v anglickém jazyce
Estimating tree species diversity from space in an alpine conifer forest: The Rao's Q diversity index meets the spectral variation hypothesis
Popis výsledku anglicky
Forests cover about 30 of the Earth surface, they are among the most biodiverse terrestrial ecosystems and represent the bulk of many ecological processes and services. The assessment of biodiversity is an important and essential goal to achieve but it can results difficult, time consuming and expensive when based on field data. Remote sensing covers large areas and provides consistent quality and standardized data, which can be used to estimate species diversity. One method to estimate species diversity from remote sensing data is based on the Spectral Variation Hypothesis (SVH), which assumes that the higher the spectral variation of an image, the higher the environmental heterogeneity and the species diversity of the considered area. SVH has been tested using different spectral heterogeneity (SH) indices and measures, recently the Raos Q index has been proposed as a new spectral variation measure to be applied to remote sensing data. In this paper, we tested the SVH in an alpine coniferous forest
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ecological Informatics
ISSN
1574-9541
e-ISSN
1878-0512
Svazek periodika
2019
Číslo periodika v rámci svazku
52
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
26-34
Kód UT WoS článku
000472984800004
EID výsledku v databázi Scopus
2-s2.0-85065048906