Automated analysis of connected speech reveals early biomarkers of Parkinson's disease in patients with rapid eye movement sleep behaviour disorder
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F17%3A10361226" target="_blank" >RIV/00064165:_____/17:10361226 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11110/17:10361226 RIV/68407700:21230/17:00306958
Výsledek na webu
<a href="http://dx.doi.org/10.1038/s41598-017-00047-5" target="_blank" >http://dx.doi.org/10.1038/s41598-017-00047-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-017-00047-5" target="_blank" >10.1038/s41598-017-00047-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated analysis of connected speech reveals early biomarkers of Parkinson's disease in patients with rapid eye movement sleep behaviour disorder
Popis výsledku v původním jazyce
For generations, the evaluation of speech abnormalities in neurodegenerative disorders such as Parkinson's disease (PD) has been limited to perceptual tests or user-controlled laboratory analysis based upon rather small samples of human vocalizations. Our study introduces a fully automated method that yields significant features related to respiratory deficits, dysphonia, imprecise articulation and dysrhythmia from acoustic microphone data of natural connected speech for predicting early and distinctive patterns of neurodegeneration. We compared speech recordings of 50 subjects with rapid eye movement sleep behaviour disorder (RBD), 30 newly diagnosed, untreated PD patients and 50 healthy controls, and showed that subliminal parkinsonian speech deficits can be reliably captured even in RBD patients, which are at high risk of developing PD or other synucleinopathies. Thus, automated vocal analysis should soon be able to contribute to screening and diagnostic procedures for prodromal parkinsonian neurodegeneration in natural environments.
Název v anglickém jazyce
Automated analysis of connected speech reveals early biomarkers of Parkinson's disease in patients with rapid eye movement sleep behaviour disorder
Popis výsledku anglicky
For generations, the evaluation of speech abnormalities in neurodegenerative disorders such as Parkinson's disease (PD) has been limited to perceptual tests or user-controlled laboratory analysis based upon rather small samples of human vocalizations. Our study introduces a fully automated method that yields significant features related to respiratory deficits, dysphonia, imprecise articulation and dysrhythmia from acoustic microphone data of natural connected speech for predicting early and distinctive patterns of neurodegeneration. We compared speech recordings of 50 subjects with rapid eye movement sleep behaviour disorder (RBD), 30 newly diagnosed, untreated PD patients and 50 healthy controls, and showed that subliminal parkinsonian speech deficits can be reliably captured even in RBD patients, which are at high risk of developing PD or other synucleinopathies. Thus, automated vocal analysis should soon be able to contribute to screening and diagnostic procedures for prodromal parkinsonian neurodegeneration in natural environments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000396828200001
EID výsledku v databázi Scopus
2-s2.0-85013304832