Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Urine proteomics for prediction of disease progression in patients with IgA nephropathy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F22%3A10437870" target="_blank" >RIV/00064165:_____/22:10437870 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11110/22:10437870

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Kxub3peREn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Kxub3peREn</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/ndt/gfaa307" target="_blank" >10.1093/ndt/gfaa307</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Urine proteomics for prediction of disease progression in patients with IgA nephropathy

  • Popis výsledku v původním jazyce

    Background. Risk of kidney function decline in immunoglobulin A (IgA) nephropathy (IgAN) is significant and may not be predicted by available clinical and histological tools. To serve this unmet need, we aimed at developing a urinary biomarker-based algorithm that predicts rapid disease progression in IgAN, thus enabling a personalized risk stratification. Methods. In this multicentre study, urine samples were collected in 209 patients with biopsy-proven IgAN. Progression was defined by tertiles of the annual change of estimated glomerular filtration rate (eGFR) during follow-up. Urine samples were analysed using capillary electrophoresis coupled mass spectrometry. The area under the receiver operating characteristic curve (AUC) was used to evaluate the risk prediction models. Results. Of the 209 patients, 64% were male. Mean age was 42 years, mean eGFR was 63 mL/min/1.73 m(2) and median proteinuria was 1.2 g/day. We identified 237 urine peptides showing significant difference in abundance according to the tertile of eGFR change. These included fragments of apolipoprotein C-III, alpha-1 antitrypsin, different collagens, fibrinogen alpha and beta, titin, haemoglobin subunits, sodium/potassiumtransporting ATPase subunit gamma, uromodulin, mucin-2, fractalkine, polymeric Ig receptor and insulin. An algorithm based on these protein fragments (IgAN237) showed a significant added value for the prediction of IgAN progression [AUC 0.89; 95% confidence interval (CI) 0.83-0.95], as compared with the clinical parameters (age, gender, proteinuria, eGFR and mean arterial pressure) alone (0.72; 95% CI 0.64-0.81). Conclusions. A urinary peptide classifier predicts progressive loss of kidney function in patients with IgAN significantly better than clinical parameters alone.

  • Název v anglickém jazyce

    Urine proteomics for prediction of disease progression in patients with IgA nephropathy

  • Popis výsledku anglicky

    Background. Risk of kidney function decline in immunoglobulin A (IgA) nephropathy (IgAN) is significant and may not be predicted by available clinical and histological tools. To serve this unmet need, we aimed at developing a urinary biomarker-based algorithm that predicts rapid disease progression in IgAN, thus enabling a personalized risk stratification. Methods. In this multicentre study, urine samples were collected in 209 patients with biopsy-proven IgAN. Progression was defined by tertiles of the annual change of estimated glomerular filtration rate (eGFR) during follow-up. Urine samples were analysed using capillary electrophoresis coupled mass spectrometry. The area under the receiver operating characteristic curve (AUC) was used to evaluate the risk prediction models. Results. Of the 209 patients, 64% were male. Mean age was 42 years, mean eGFR was 63 mL/min/1.73 m(2) and median proteinuria was 1.2 g/day. We identified 237 urine peptides showing significant difference in abundance according to the tertile of eGFR change. These included fragments of apolipoprotein C-III, alpha-1 antitrypsin, different collagens, fibrinogen alpha and beta, titin, haemoglobin subunits, sodium/potassiumtransporting ATPase subunit gamma, uromodulin, mucin-2, fractalkine, polymeric Ig receptor and insulin. An algorithm based on these protein fragments (IgAN237) showed a significant added value for the prediction of IgAN progression [AUC 0.89; 95% confidence interval (CI) 0.83-0.95], as compared with the clinical parameters (age, gender, proteinuria, eGFR and mean arterial pressure) alone (0.72; 95% CI 0.64-0.81). Conclusions. A urinary peptide classifier predicts progressive loss of kidney function in patients with IgAN significantly better than clinical parameters alone.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30217 - Urology and nephrology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nephrology, Dialysis, Transplantation

  • ISSN

    0931-0509

  • e-ISSN

    1460-2385

  • Svazek periodika

    37

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    42-52

  • Kód UT WoS článku

    000743609700009

  • EID výsledku v databázi Scopus

    2-s2.0-85125130465