Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic caries detection in bitewing radiographs: Part I—deep learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F23%3A10469919" target="_blank" >RIV/00064165:_____/23:10469919 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21230/23:00371239 RIV/00216208:11110/23:10469919

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uHRM_bnn~T" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uHRM_bnn~T</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00784-023-05335-1" target="_blank" >10.1007/s00784-023-05335-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic caries detection in bitewing radiographs: Part I—deep learning

  • Popis výsledku v původním jazyce

    Objective: The aim of this work was to assemble a large annotated dataset of bitewing radiographs and to use convolutional neural networks to automate the detection of dental caries in bitewing radiographs with human-level performance.Materials and Methods: A dataset of 3989 bitewing radiographs was created and 7257 carious lesions were annotated using minimal bounding boxes. The dataset was then divided into 3 parts for the training (70%), validation (15%), and testing (15%) of multiple object detection convolutional neural networks (CNN). The tested CNN architectures included YOLOv5, Faster R-CNN, RetinaNet, and EfficientDet. To further improve the detection performance, model ensembling was used, and nested predictions were removed during post-processing. The models were compared in terms of the F1 score and average precision (AP) with various thresholds of the intersection over union (IoU).Results: The twelve tested architectures had F1 scores of 0.72-0.76. Their performance was improved by ensembling which increased the F1 score to 0.79-0.80. The best-performing ensemble detected caries with the precision of 0.83, recall of 0.77, F1 = 0.80, and AP of 0.86 at IoU=0.5. Small carious lesions were predicted with slightly lower accuracy (AP 0.82) than medium or large lesions (AP 0.88). Conclusions: The trained ensemble of object detection CNNs detected caries with satisfactory accuracy and performed at least as well as experienced dentists (see companion paper, Part II). The performance on small lesions was likely limited by inconsistencies in the training dataset.Clinical Significance: Caries can be automatically detected using convolutional neural networks. However, detecting incipient carious lesions remains challenging.

  • Název v anglickém jazyce

    Automatic caries detection in bitewing radiographs: Part I—deep learning

  • Popis výsledku anglicky

    Objective: The aim of this work was to assemble a large annotated dataset of bitewing radiographs and to use convolutional neural networks to automate the detection of dental caries in bitewing radiographs with human-level performance.Materials and Methods: A dataset of 3989 bitewing radiographs was created and 7257 carious lesions were annotated using minimal bounding boxes. The dataset was then divided into 3 parts for the training (70%), validation (15%), and testing (15%) of multiple object detection convolutional neural networks (CNN). The tested CNN architectures included YOLOv5, Faster R-CNN, RetinaNet, and EfficientDet. To further improve the detection performance, model ensembling was used, and nested predictions were removed during post-processing. The models were compared in terms of the F1 score and average precision (AP) with various thresholds of the intersection over union (IoU).Results: The twelve tested architectures had F1 scores of 0.72-0.76. Their performance was improved by ensembling which increased the F1 score to 0.79-0.80. The best-performing ensemble detected caries with the precision of 0.83, recall of 0.77, F1 = 0.80, and AP of 0.86 at IoU=0.5. Small carious lesions were predicted with slightly lower accuracy (AP 0.82) than medium or large lesions (AP 0.88). Conclusions: The trained ensemble of object detection CNNs detected caries with satisfactory accuracy and performed at least as well as experienced dentists (see companion paper, Part II). The performance on small lesions was likely limited by inconsistencies in the training dataset.Clinical Significance: Caries can be automatically detected using convolutional neural networks. However, detecting incipient carious lesions remains challenging.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30208 - Dentistry, oral surgery and medicine

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Clinical Oral Investigations

  • ISSN

    1432-6981

  • e-ISSN

    1436-3771

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    9

  • Strana od-do

    7463-7471

  • Kód UT WoS článku

    001102291500001

  • EID výsledku v databázi Scopus

    2-s2.0-85176781185