Weakly supervised learning for treeline ecotone classification based on aerial orthoimages and an ancillary DSM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10448917" target="_blank" >RIV/00216208:11310/22:10448917 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5194/isprs-annals-V-3-2022-33-2022" target="_blank" >https://doi.org/10.5194/isprs-annals-V-3-2022-33-2022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/isprs-annals-V-3-2022-33-2022" target="_blank" >10.5194/isprs-annals-V-3-2022-33-2022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Weakly supervised learning for treeline ecotone classification based on aerial orthoimages and an ancillary DSM
Popis výsledku v původním jazyce
Convolutional neural networks (CNNs) effectively classify standard datasets in remote sensing (RS). Yet, real-world data are more difficult to classify using CNNs because these networks require relatively large amounts of training data. To reduce training data requirements, two approaches can be followed - either pretraining models on larger datasets or augmenting the available training data. However, these commonly used strategies do not fully resolve the lack of training data for land cover classification in RS. Our goal is to classify trees and shrubs from aerial orthoimages in the treeline ecotone of the Krkonoše Mountains, Czechia. Instead of training a model on a smaller, human-labelled dataset, we semiautomatically created training data using an ancillary normalised Digital Surface Model (nDSM) and image spectral information. This approach can complement existing techniques, trading accuracy for a larger labelled dataset while assuming that the classifier can handle the training data noise. Weakly supervised learning on a CNN led to 68.99% mean Intersection over Union ( IoU) and 81.65% mean F1-score for U-Net and 72.94% IoU and 84.35% mean F1-score for our modified U-Net on a test set comprising over 1000 manually labelled points. Notwithstanding the bias resulting from the noise in training data (especially in the least occurring tree class), our data show that standard semantic segmentation networks can be used for weakly supervised learning for local-scale land cover mapping.
Název v anglickém jazyce
Weakly supervised learning for treeline ecotone classification based on aerial orthoimages and an ancillary DSM
Popis výsledku anglicky
Convolutional neural networks (CNNs) effectively classify standard datasets in remote sensing (RS). Yet, real-world data are more difficult to classify using CNNs because these networks require relatively large amounts of training data. To reduce training data requirements, two approaches can be followed - either pretraining models on larger datasets or augmenting the available training data. However, these commonly used strategies do not fully resolve the lack of training data for land cover classification in RS. Our goal is to classify trees and shrubs from aerial orthoimages in the treeline ecotone of the Krkonoše Mountains, Czechia. Instead of training a model on a smaller, human-labelled dataset, we semiautomatically created training data using an ancillary normalised Digital Surface Model (nDSM) and image spectral information. This approach can complement existing techniques, trading accuracy for a larger labelled dataset while assuming that the classifier can handle the training data noise. Weakly supervised learning on a CNN led to 68.99% mean Intersection over Union ( IoU) and 81.65% mean F1-score for U-Net and 72.94% IoU and 84.35% mean F1-score for our modified U-Net on a test set comprising over 1000 manually labelled points. Notwithstanding the bias resulting from the noise in training data (especially in the least occurring tree class), our data show that standard semantic segmentation networks can be used for weakly supervised learning for local-scale land cover mapping.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
XXIV ISPRS Congress on Imaging Today, Foreseeing Tomorrow, Commission III
ISBN
—
ISSN
2194-9042
e-ISSN
2194-9050
Počet stran výsledku
6
Strana od-do
33-38
Název nakladatele
Copernicus Gesellschaft MBH
Místo vydání
Gottingen
Místo konání akce
Nice
Datum konání akce
6. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000855203200006