Learning CNNs for face recognition from weakly annotated images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312262" target="_blank" >RIV/68407700:21230/17:00312262 - isvavai.cz</a>
Výsledek na webu
<a href="http://cmp.felk.cvut.cz/pub/cmp/articles/franc/Franc-EMSVM-FG2017.pdf" target="_blank" >http://cmp.felk.cvut.cz/pub/cmp/articles/franc/Franc-EMSVM-FG2017.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/FG.2017.115" target="_blank" >10.1109/FG.2017.115</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning CNNs for face recognition from weakly annotated images
Popis výsledku v původním jazyce
Supervised learning of convolutional neural networks (CNNs) for face recognition requires a large set of facial images each annotated with a single attribute label to be predicted. In this paper we propose a method for learning CNNs from weakly annotated images. The weak annotation in our setting means that a pair of an attribute label and a person identity label is assigned to a set of faces automatically detected in the image. The challenge is to link the annotation with the correct face. The weakly annotated images of this type can be collected by an automated process not requiring a human labor. We formulate learning from weakly annotated images as a maximum likelihood estimation of a parametric distribution describing the data. The ML problem is solved by an instance of EM algorithm which in its inner loop learns a CNN to perform given face recognition task. Experiments on age and gender estimation problem show that the proposed EM-CNN algorithm significantly outperforms the state-of-the-art approach for dealing with this type of data.
Název v anglickém jazyce
Learning CNNs for face recognition from weakly annotated images
Popis výsledku anglicky
Supervised learning of convolutional neural networks (CNNs) for face recognition requires a large set of facial images each annotated with a single attribute label to be predicted. In this paper we propose a method for learning CNNs from weakly annotated images. The weak annotation in our setting means that a pair of an attribute label and a person identity label is assigned to a set of faces automatically detected in the image. The challenge is to link the annotation with the correct face. The weakly annotated images of this type can be collected by an automated process not requiring a human labor. We formulate learning from weakly annotated images as a maximum likelihood estimation of a parametric distribution describing the data. The ML problem is solved by an instance of EM algorithm which in its inner loop learns a CNN to perform given face recognition task. Experiments on age and gender estimation problem show that the proposed EM-CNN algorithm significantly outperforms the state-of-the-art approach for dealing with this type of data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Automatic Face and Gesture Recognition Workshops, Biometrics in the Wild
ISBN
978-1-5090-4023-0
ISSN
—
e-ISSN
2326-5396
Počet stran výsledku
8
Strana od-do
933-940
Název nakladatele
IEEE Computer Society
Místo vydání
USA
Místo konání akce
Washington DC
Datum konání akce
30. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000414287400129