Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Learning CNNs from Weakly Annotated Facial Images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00324147" target="_blank" >RIV/68407700:21230/18:00324147 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.imavis.2018.06.011" target="_blank" >https://doi.org/10.1016/j.imavis.2018.06.011</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.imavis.2018.06.011" target="_blank" >10.1016/j.imavis.2018.06.011</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Learning CNNs from Weakly Annotated Facial Images

  • Popis výsledku v původním jazyce

    Learning of convolutional neural networks (CNNs) to perform a face recognition task requires a large set of facial images each annotated with a label to be predicted. In this paper we propose a method for learning CNNs from weakly annotated images. The weak annotation in our setting means that a pair of an attribute label and a person identity label is assigned to a set of faces automatically detected in the image. The challenge is to link the annotation with the correct face. The weakly annotated images of this type can be collected by an automated process not requiring a human labor. We formulate learning from weakly annotated images as a maximum likelihood (ML) estimation of a parametric distribution describing the weakly annotated images. The ML problem is solved by an instance of the EM algorithm which in its inner loop learns a CNN to predict attribute label from facial images. Experiments on age and gender estimation problem show that the proposed algorithm significantly outperforms the existing heuristic approach for dealing with this type of data. A practical outcome of our paper is a new annotation of the IMDB database [26] containing 300 k faces each one annotated by biological age, gender and identity labels.

  • Název v anglickém jazyce

    Learning CNNs from Weakly Annotated Facial Images

  • Popis výsledku anglicky

    Learning of convolutional neural networks (CNNs) to perform a face recognition task requires a large set of facial images each annotated with a label to be predicted. In this paper we propose a method for learning CNNs from weakly annotated images. The weak annotation in our setting means that a pair of an attribute label and a person identity label is assigned to a set of faces automatically detected in the image. The challenge is to link the annotation with the correct face. The weakly annotated images of this type can be collected by an automated process not requiring a human labor. We formulate learning from weakly annotated images as a maximum likelihood (ML) estimation of a parametric distribution describing the weakly annotated images. The ML problem is solved by an instance of the EM algorithm which in its inner loop learns a CNN to predict attribute label from facial images. Experiments on age and gender estimation problem show that the proposed algorithm significantly outperforms the existing heuristic approach for dealing with this type of data. A practical outcome of our paper is a new annotation of the IMDB database [26] containing 300 k faces each one annotated by biological age, gender and identity labels.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Image and Vision Computing

  • ISSN

    0262-8856

  • e-ISSN

    1872-8138

  • Svazek periodika

    77

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    10-20

  • Kód UT WoS článku

    000446282900002

  • EID výsledku v databázi Scopus

    2-s2.0-85049924723