Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Structural parameters are superior to eigenvector centrality in detecting progressive supranuclear palsy with machine learning & multimodal MRI

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F24%3A10483769" target="_blank" >RIV/00064165:_____/24:10483769 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11110/24:10483769

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aYh8wUZfh4" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aYh8wUZfh4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.heliyon.2024.e34910" target="_blank" >10.1016/j.heliyon.2024.e34910</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Structural parameters are superior to eigenvector centrality in detecting progressive supranuclear palsy with machine learning & multimodal MRI

  • Popis výsledku v původním jazyce

    Progressive supranuclear palsy (PSP) is an atypical Parkinsonian syndrome characterized initially by falls and eye movement impairment. This multimodal imaging study aimed at eliciting structural and functional disease-specific brain alterations. T1-weighted and resting-state functional MRI were applied in multi-centric cohorts of PSP and matched healthy controls. Midbrain, cerebellum, and cerebellar peduncles showed severely low gray/white matter volume, whereas thinner cortical gray matter was observed in cingulate cortex, medial and temporal gyri, and insula. Eigenvector centrality analyses revealed regionally specific alterations. Multivariate pattern recognition classified patients correctly based on gray and white matter segmentations with up to 98 % accuracy. Highest accuracies were obtained when restricting feature selection to the midbrain. Eigenvector centrality indices yielded an accuracy around 70 % in this comparison; however, this result did not reach significance. In sum, the study reveals multimodal, widespread brain changes in addition to the well-known midbrain atrophy in PSP. Alterations in brain structure seem to be superior to eigenvector centrality parameters, in particular for prediction with machine learning approaches.

  • Název v anglickém jazyce

    Structural parameters are superior to eigenvector centrality in detecting progressive supranuclear palsy with machine learning & multimodal MRI

  • Popis výsledku anglicky

    Progressive supranuclear palsy (PSP) is an atypical Parkinsonian syndrome characterized initially by falls and eye movement impairment. This multimodal imaging study aimed at eliciting structural and functional disease-specific brain alterations. T1-weighted and resting-state functional MRI were applied in multi-centric cohorts of PSP and matched healthy controls. Midbrain, cerebellum, and cerebellar peduncles showed severely low gray/white matter volume, whereas thinner cortical gray matter was observed in cingulate cortex, medial and temporal gyri, and insula. Eigenvector centrality analyses revealed regionally specific alterations. Multivariate pattern recognition classified patients correctly based on gray and white matter segmentations with up to 98 % accuracy. Highest accuracies were obtained when restricting feature selection to the midbrain. Eigenvector centrality indices yielded an accuracy around 70 % in this comparison; however, this result did not reach significance. In sum, the study reveals multimodal, widespread brain changes in addition to the well-known midbrain atrophy in PSP. Alterations in brain structure seem to be superior to eigenvector centrality parameters, in particular for prediction with machine learning approaches.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Heliyon

  • ISSN

    2405-8440

  • e-ISSN

    2405-8440

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    e34910

  • Kód UT WoS článku

    001291140300001

  • EID výsledku v databázi Scopus

    2-s2.0-85201429935