Disease-Specific Regions Outperform Whole-Brain Approaches in Identifying Progressive Supranuclear Palsy:A Multicentric MRI Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F17%3A10338248" target="_blank" >RIV/00064165:_____/17:10338248 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11110/17:10338248 RIV/00023001:_____/17:00060290
Výsledek na webu
<a href="http://dx.doi.org/10.3389/fnins.2017.00100" target="_blank" >http://dx.doi.org/10.3389/fnins.2017.00100</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fnins.2017.00100" target="_blank" >10.3389/fnins.2017.00100</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Disease-Specific Regions Outperform Whole-Brain Approaches in Identifying Progressive Supranuclear Palsy:A Multicentric MRI Study
Popis výsledku v původním jazyce
To identify progressive supranuclear palsy (PSP), we combined voxel-based morphometry (VBM) and support vector machine (SVM) classification using disease-specific features in multicentric magnetic resonance imaging (MRI) data. Structural brain differences were investigated at four centers between 20 patients with PSP and 20 age-matched healthy controls with T1-weighted MRI at 3T. To pave the way for future application in personalized medicine, we applied SVM classification to identify PSP on an individual level besides group analyses based on VBM. We found a major decline in gray matter density in the brainstem, insula, and striatum, and also in frontomedian regions, which is in line with current literature. Moreover, SVM classification yielded high accuracy rates above 80% for disease identification in imaging data. Focusing analyses on disease-specific regions-of-interest (ROI) led to higher accuracy rates compared to a whole-brain approach. Using a polynomial kernel (instead of a linear kernel) led to an increased sensitivity and a higher specificity of disease detection. Our study supports the application of MRI for individual diagnosis of PSP, if combined with SVM approaches. We demonstrate that SVM classification provides high accuracy rates in multicentric dataa prerequisite for potential application in diagnostic routine.
Název v anglickém jazyce
Disease-Specific Regions Outperform Whole-Brain Approaches in Identifying Progressive Supranuclear Palsy:A Multicentric MRI Study
Popis výsledku anglicky
To identify progressive supranuclear palsy (PSP), we combined voxel-based morphometry (VBM) and support vector machine (SVM) classification using disease-specific features in multicentric magnetic resonance imaging (MRI) data. Structural brain differences were investigated at four centers between 20 patients with PSP and 20 age-matched healthy controls with T1-weighted MRI at 3T. To pave the way for future application in personalized medicine, we applied SVM classification to identify PSP on an individual level besides group analyses based on VBM. We found a major decline in gray matter density in the brainstem, insula, and striatum, and also in frontomedian regions, which is in line with current literature. Moreover, SVM classification yielded high accuracy rates above 80% for disease identification in imaging data. Focusing analyses on disease-specific regions-of-interest (ROI) led to higher accuracy rates compared to a whole-brain approach. Using a polynomial kernel (instead of a linear kernel) led to an increased sensitivity and a higher specificity of disease detection. Our study supports the application of MRI for individual diagnosis of PSP, if combined with SVM approaches. We demonstrate that SVM classification provides high accuracy rates in multicentric dataa prerequisite for potential application in diagnostic routine.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Neuroscience
ISSN
1662-453X
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000395560500001
EID výsledku v databázi Scopus
2-s2.0-85017168179