Advanced Statistical Analysis of 3D Kinect Data: Mimetic Muscle Rehabilitation Following Head and Neck Surgeries Causing Facial Paresis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064173%3A_____%2F20%3AN0000021" target="_blank" >RIV/00064173:_____/20:N0000021 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11120/21:43920903 RIV/60461373:22340/21:43923556 RIV/00064173:_____/21:N0000178
Výsledek na webu
<a href="https://doi.org/10.3390/s21010103" target="_blank" >https://doi.org/10.3390/s21010103</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s21010103" target="_blank" >10.3390/s21010103</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced Statistical Analysis of 3D Kinect Data: Mimetic Muscle Rehabilitation Following Head and Neck Surgeries Causing Facial Paresis
Popis výsledku v původním jazyce
An advanced statistical analysis of patients' faces after specific surgical procedures that temporarily negatively affect the patient's mimetic muscles is presented. For effective planning of rehabilitation, which typically lasts several months, it is crucial to correctly evaluate the improvement of the mimetic muscle function. The current way of describing the development of rehabilitation depends on the subjective opinion and expertise of the clinician and is not very precise concerning when the most common classification (House-Brackmann scale) is used. Our system is based on a stereovision Kinect camera and an advanced mathematical approach that objectively quantifies the mimetic muscle function independently of the clinician's opinion. To effectively deal with the complexity of the 3D camera input data and uncertainty of the evaluation process, we designed a three-stage data-analytic procedure combining the calculation of indicators determined by clinicians with advanced statistical methods including functional data analysis and ordinal (multiple) logistic regression. We worked with a dataset of 93 distinct patients and 122 sets of measurements. In comparison to the classification with the House-Brackmann scale the developed system is able to automatically monitor reinnervation of mimetic muscles giving us opportunity to discriminate even small improvements during the course of rehabilitation.
Název v anglickém jazyce
Advanced Statistical Analysis of 3D Kinect Data: Mimetic Muscle Rehabilitation Following Head and Neck Surgeries Causing Facial Paresis
Popis výsledku anglicky
An advanced statistical analysis of patients' faces after specific surgical procedures that temporarily negatively affect the patient's mimetic muscles is presented. For effective planning of rehabilitation, which typically lasts several months, it is crucial to correctly evaluate the improvement of the mimetic muscle function. The current way of describing the development of rehabilitation depends on the subjective opinion and expertise of the clinician and is not very precise concerning when the most common classification (House-Brackmann scale) is used. Our system is based on a stereovision Kinect camera and an advanced mathematical approach that objectively quantifies the mimetic muscle function independently of the clinician's opinion. To effectively deal with the complexity of the 3D camera input data and uncertainty of the evaluation process, we designed a three-stage data-analytic procedure combining the calculation of indicators determined by clinicians with advanced statistical methods including functional data analysis and ordinal (multiple) logistic regression. We worked with a dataset of 93 distinct patients and 122 sets of measurements. In comparison to the classification with the House-Brackmann scale the developed system is able to automatically monitor reinnervation of mimetic muscles giving us opportunity to discriminate even small improvements during the course of rehabilitation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30206 - Otorhinolaryngology
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-8220
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
103
Kód UT WoS článku
000606098600001
EID výsledku v databázi Scopus
2-s2.0-85098778618