Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Advanced Statistical Analysis of 3D Kinect Data: A Comparison of the Classification Methods

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10434985" target="_blank" >RIV/00216208:11320/21:10434985 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22340/21:43923548 RIV/00064173:_____/21:N0000169

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=owihRbyy7N" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=owihRbyy7N</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app11104572" target="_blank" >10.3390/app11104572</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Advanced Statistical Analysis of 3D Kinect Data: A Comparison of the Classification Methods

  • Popis výsledku v původním jazyce

    This paper focuses on the statistical analysis of mimetic muscle rehabilitation after head and neck surgery causing facial paresis in patients after head and neck surgery. Our work deals with an evaluation problem of mimetic muscle rehabilitation that is observed by a Kinect stereo-vision camera. After a specific brain surgery, patients are often affected by face palsy, and rehabilitation to renew mimetic muscle innervation takes several months. It is important to be able to observe the rehabilitation process in an objective way. The most commonly used House-Brackmann (HB) scale is based on the clinician&apos;s subjective opinion. This paper compares different methods of supervised learning classification that should be independent of the clinician&apos;s opinion. We compare a parametric model (based on logistic regression), non-parametric model (based on random forests), and neural networks. The classification problem that we have studied combines a limited dataset (it contains only 122 measurements of 93 patients) of complex observations (each measurement consists of a collection of time curves) with an ordinal response variable. To balance the frequencies of the considered classes in our data set, we reclassified the samples from HB4 to HB3 and HB5 to HB6-it means that only four HB grades are used for classification algorithm. The parametric statistical model was found to be the most suitable thanks to its stability, tractability, and reasonable performance in terms of both accuracy and precision.

  • Název v anglickém jazyce

    Advanced Statistical Analysis of 3D Kinect Data: A Comparison of the Classification Methods

  • Popis výsledku anglicky

    This paper focuses on the statistical analysis of mimetic muscle rehabilitation after head and neck surgery causing facial paresis in patients after head and neck surgery. Our work deals with an evaluation problem of mimetic muscle rehabilitation that is observed by a Kinect stereo-vision camera. After a specific brain surgery, patients are often affected by face palsy, and rehabilitation to renew mimetic muscle innervation takes several months. It is important to be able to observe the rehabilitation process in an objective way. The most commonly used House-Brackmann (HB) scale is based on the clinician&apos;s subjective opinion. This paper compares different methods of supervised learning classification that should be independent of the clinician&apos;s opinion. We compare a parametric model (based on logistic regression), non-parametric model (based on random forests), and neural networks. The classification problem that we have studied combines a limited dataset (it contains only 122 measurements of 93 patients) of complex observations (each measurement consists of a collection of time curves) with an ordinal response variable. To balance the frequencies of the considered classes in our data set, we reclassified the samples from HB4 to HB3 and HB5 to HB6-it means that only four HB grades are used for classification algorithm. The parametric statistical model was found to be the most suitable thanks to its stability, tractability, and reasonable performance in terms of both accuracy and precision.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences [online]

  • ISSN

    2076-3417

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    18

  • Strana od-do

    4572

  • Kód UT WoS článku

    000662587300001

  • EID výsledku v databázi Scopus

    2-s2.0-85106946568