Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gait disorder classification based on effective feature selection and unsupervised methodology

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064173%3A_____%2F24%3A43926615" target="_blank" >RIV/00064173:_____/24:43926615 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11120/24:43926615 RIV/00216275:25530/24:39922650 RIV/60461373:22340/24:43930907

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.compbiomed.2024.108077" target="_blank" >https://doi.org/10.1016/j.compbiomed.2024.108077</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compbiomed.2024.108077" target="_blank" >10.1016/j.compbiomed.2024.108077</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gait disorder classification based on effective feature selection and unsupervised methodology

  • Popis výsledku v původním jazyce

    In gait stability analysis, patients suffering from dysfunction problems are impacted by shifts in their dynamic balance. Monitoring the patients&apos; progress is important for allowing physicians and patients to observe the rehabilitation process accurately. In this study, we designed a new methodology for classifying gait disorders to quantify patients&apos; progress. The dataset in this study includes 84 measurements of 37 patients based on a physician&apos;s opinion. In this study, the system, which includes a Kinect camera to observe and store the frames of patients walking down a hallway, a key-point detector to detect the skeletal key points, and an encoder transformer classifier network integrated with generator-discriminator networks (ET-GD), is designed to evaluate the classification of gait dysfunction. The detector extracts the skeletal key points of patients. After feature engineering, the selected high-level features are fed into the proposed neural network to analyse patient movement and perform the final evaluation of gait dysfunction. The proposed network is inspired by the 1D encoder transformer, which is integrated with two main networks: a network for classification and a network to generate fake output data similar to the input data. Furthermore, we used a discriminator structure to distinguish between the actual data (input) and fake data (generated data). Due to the multi-structural networks in the proposed method, multi-loss functions need to be optimised; this increases the accuracy of the encoder transformer classifier.

  • Název v anglickém jazyce

    Gait disorder classification based on effective feature selection and unsupervised methodology

  • Popis výsledku anglicky

    In gait stability analysis, patients suffering from dysfunction problems are impacted by shifts in their dynamic balance. Monitoring the patients&apos; progress is important for allowing physicians and patients to observe the rehabilitation process accurately. In this study, we designed a new methodology for classifying gait disorders to quantify patients&apos; progress. The dataset in this study includes 84 measurements of 37 patients based on a physician&apos;s opinion. In this study, the system, which includes a Kinect camera to observe and store the frames of patients walking down a hallway, a key-point detector to detect the skeletal key points, and an encoder transformer classifier network integrated with generator-discriminator networks (ET-GD), is designed to evaluate the classification of gait dysfunction. The detector extracts the skeletal key points of patients. After feature engineering, the selected high-level features are fed into the proposed neural network to analyse patient movement and perform the final evaluation of gait dysfunction. The proposed network is inspired by the 1D encoder transformer, which is integrated with two main networks: a network for classification and a network to generate fake output data similar to the input data. Furthermore, we used a discriminator structure to distinguish between the actual data (input) and fake data (generated data). Due to the multi-structural networks in the proposed method, multi-loss functions need to be optimised; this increases the accuracy of the encoder transformer classifier.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30206 - Otorhinolaryngology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAIN19007" target="_blank" >LTAIN19007: Vývoj pokročilých výpočetních algoritmů pro objektivní posouzení pooperační rehabilitace</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers in Biology and Medicine

  • ISSN

    0010-4825

  • e-ISSN

    1879-0534

  • Svazek periodika

    170

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    108077

  • Kód UT WoS článku

    001175043500001

  • EID výsledku v databázi Scopus

    2-s2.0-85184064424