Gait disorder classification based on effective feature selection and unsupervised methodology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064173%3A_____%2F24%3A43926615" target="_blank" >RIV/00064173:_____/24:43926615 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11120/24:43926615 RIV/00216275:25530/24:39922650 RIV/60461373:22340/24:43930907
Výsledek na webu
<a href="https://doi.org/10.1016/j.compbiomed.2024.108077" target="_blank" >https://doi.org/10.1016/j.compbiomed.2024.108077</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compbiomed.2024.108077" target="_blank" >10.1016/j.compbiomed.2024.108077</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gait disorder classification based on effective feature selection and unsupervised methodology
Popis výsledku v původním jazyce
In gait stability analysis, patients suffering from dysfunction problems are impacted by shifts in their dynamic balance. Monitoring the patients' progress is important for allowing physicians and patients to observe the rehabilitation process accurately. In this study, we designed a new methodology for classifying gait disorders to quantify patients' progress. The dataset in this study includes 84 measurements of 37 patients based on a physician's opinion. In this study, the system, which includes a Kinect camera to observe and store the frames of patients walking down a hallway, a key-point detector to detect the skeletal key points, and an encoder transformer classifier network integrated with generator-discriminator networks (ET-GD), is designed to evaluate the classification of gait dysfunction. The detector extracts the skeletal key points of patients. After feature engineering, the selected high-level features are fed into the proposed neural network to analyse patient movement and perform the final evaluation of gait dysfunction. The proposed network is inspired by the 1D encoder transformer, which is integrated with two main networks: a network for classification and a network to generate fake output data similar to the input data. Furthermore, we used a discriminator structure to distinguish between the actual data (input) and fake data (generated data). Due to the multi-structural networks in the proposed method, multi-loss functions need to be optimised; this increases the accuracy of the encoder transformer classifier.
Název v anglickém jazyce
Gait disorder classification based on effective feature selection and unsupervised methodology
Popis výsledku anglicky
In gait stability analysis, patients suffering from dysfunction problems are impacted by shifts in their dynamic balance. Monitoring the patients' progress is important for allowing physicians and patients to observe the rehabilitation process accurately. In this study, we designed a new methodology for classifying gait disorders to quantify patients' progress. The dataset in this study includes 84 measurements of 37 patients based on a physician's opinion. In this study, the system, which includes a Kinect camera to observe and store the frames of patients walking down a hallway, a key-point detector to detect the skeletal key points, and an encoder transformer classifier network integrated with generator-discriminator networks (ET-GD), is designed to evaluate the classification of gait dysfunction. The detector extracts the skeletal key points of patients. After feature engineering, the selected high-level features are fed into the proposed neural network to analyse patient movement and perform the final evaluation of gait dysfunction. The proposed network is inspired by the 1D encoder transformer, which is integrated with two main networks: a network for classification and a network to generate fake output data similar to the input data. Furthermore, we used a discriminator structure to distinguish between the actual data (input) and fake data (generated data). Due to the multi-structural networks in the proposed method, multi-loss functions need to be optimised; this increases the accuracy of the encoder transformer classifier.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30206 - Otorhinolaryngology
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIN19007" target="_blank" >LTAIN19007: Vývoj pokročilých výpočetních algoritmů pro objektivní posouzení pooperační rehabilitace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers in Biology and Medicine
ISSN
0010-4825
e-ISSN
1879-0534
Svazek periodika
170
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
108077
Kód UT WoS článku
001175043500001
EID výsledku v databázi Scopus
2-s2.0-85184064424