Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparison of Feature Selection and Supervised Methods for Classifying Gait Disorders

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064173%3A_____%2F24%3A43926715" target="_blank" >RIV/00064173:_____/24:43926715 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11120/24:43926715 RIV/00216275:25530/24:39922651 RIV/60461373:22340/24:43930904

  • Výsledek na webu

    <a href="https://doi.org/10.1109/ACCESS.2024.3360861" target="_blank" >https://doi.org/10.1109/ACCESS.2024.3360861</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2024.3360861" target="_blank" >10.1109/ACCESS.2024.3360861</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparison of Feature Selection and Supervised Methods for Classifying Gait Disorders

  • Popis výsledku v původním jazyce

    Recently, systems for classifying gait disorders have been of great interest. However, quantifying the progress of these disorders has been highly dependent on a physician&apos;s judgement in classifying sick and healthy subjects. We examine the effects of gait stability analysis on gait dysfunction problems, which are impacted by the patient&apos;s dynamic balance. The dataset in this study was collected and labelled based on the opinions of physicians at Prague Hospital; it included 84 measurements of 37 patients. A keypoint detector was applied to detect the skeletal keypoints of patients. We have prepared two different datasets from the detection and tracking results. For the proposed feature selection method, we have used statistical measurements such as the x and y coordinates for each keypoint, the distance, and the angle between two selected keypoints. Using these statistical measurements, we have prepared different subgroups with different numbers of features to examine. We have also applied ten different feature selection algorithms to obtain data from different numbers of features automatically. Then, these datasets with high-level features were used to train well-known networks, such as the long short-term memory (LSTM), gated recurrent unit (GRU), and multiple layer perceptron (MLP) networks. The study results showed that the 30 features selected by the analysis of variance (ANOVA) algorithm and used to train the GRU network ranked among the best features and resulted in a classification F -score of 85%. The results also prove that the data generated by the detector method are more effective than the data generated by the tracking method due to the format of the exercises in our dataset, which were designed by physicians. Moreover, the best feature selection approaches have considerably improved the classification F -score compared to manual feature generation.

  • Název v anglickém jazyce

    Comparison of Feature Selection and Supervised Methods for Classifying Gait Disorders

  • Popis výsledku anglicky

    Recently, systems for classifying gait disorders have been of great interest. However, quantifying the progress of these disorders has been highly dependent on a physician&apos;s judgement in classifying sick and healthy subjects. We examine the effects of gait stability analysis on gait dysfunction problems, which are impacted by the patient&apos;s dynamic balance. The dataset in this study was collected and labelled based on the opinions of physicians at Prague Hospital; it included 84 measurements of 37 patients. A keypoint detector was applied to detect the skeletal keypoints of patients. We have prepared two different datasets from the detection and tracking results. For the proposed feature selection method, we have used statistical measurements such as the x and y coordinates for each keypoint, the distance, and the angle between two selected keypoints. Using these statistical measurements, we have prepared different subgroups with different numbers of features to examine. We have also applied ten different feature selection algorithms to obtain data from different numbers of features automatically. Then, these datasets with high-level features were used to train well-known networks, such as the long short-term memory (LSTM), gated recurrent unit (GRU), and multiple layer perceptron (MLP) networks. The study results showed that the 30 features selected by the analysis of variance (ANOVA) algorithm and used to train the GRU network ranked among the best features and resulted in a classification F -score of 85%. The results also prove that the data generated by the detector method are more effective than the data generated by the tracking method due to the format of the exercises in our dataset, which were designed by physicians. Moreover, the best feature selection approaches have considerably improved the classification F -score compared to manual feature generation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30206 - Otorhinolaryngology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    17876-17894

  • Kód UT WoS článku

    001161864000001

  • EID výsledku v databázi Scopus

    2-s2.0-85184335149