Automatic Detection and Spatial Clustering of Interictal Discharges in Invasive Recordings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F13%3A10394583" target="_blank" >RIV/00064203:_____/13:10394583 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/13:00205873 RIV/00216208:11130/13:10394583
Výsledek na webu
<a href="https://doi.org/10.1109/MeMeA.2013.6549739" target="_blank" >https://doi.org/10.1109/MeMeA.2013.6549739</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MeMeA.2013.6549739" target="_blank" >10.1109/MeMeA.2013.6549739</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Detection and Spatial Clustering of Interictal Discharges in Invasive Recordings
Popis výsledku v původním jazyce
Interictal epileptiform discharges (spikes) represent electrographic marker of epileptogenic brain tissue. Besides ictal onsets, localization of interictal epileptiform discharges provides additional information to plan resective epilepsy surgery. The main goals of this study were: 1) to develop a reliable automatic algorithm to detect high and low amplitude interictal epileptiform discharges in intracranial EEG recordings and 2) to design a clustering method to extract spatial patterns of their propagation. For detection, we used a signal envelope modeling technique which adaptively identifies statistical parameters of signals containing spikes. Application of this technique to human intracranial EEG data demonstrated that it was superior to expert labeling and it was able to detect even small amplitude interictal epileptiform discharges. In the second task, detected spikes were clustered by principal component analysis according to their spatial distribution. Preliminary results showed that this unsupervised approach is able to identify distinct sources of interictal epileptiform discharges and has the potential to increase the yield of presurgical examination by improved delineation of the irritative zone.
Název v anglickém jazyce
Automatic Detection and Spatial Clustering of Interictal Discharges in Invasive Recordings
Popis výsledku anglicky
Interictal epileptiform discharges (spikes) represent electrographic marker of epileptogenic brain tissue. Besides ictal onsets, localization of interictal epileptiform discharges provides additional information to plan resective epilepsy surgery. The main goals of this study were: 1) to develop a reliable automatic algorithm to detect high and low amplitude interictal epileptiform discharges in intracranial EEG recordings and 2) to design a clustering method to extract spatial patterns of their propagation. For detection, we used a signal envelope modeling technique which adaptively identifies statistical parameters of signals containing spikes. Application of this technique to human intracranial EEG data demonstrated that it was superior to expert labeling and it was able to detect even small amplitude interictal epileptiform discharges. In the second task, detected spikes were clustered by principal component analysis according to their spatial distribution. Preliminary results showed that this unsupervised approach is able to identify distinct sources of interictal epileptiform discharges and has the potential to increase the yield of presurgical examination by improved delineation of the irritative zone.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
ISBN
978-1-4673-5196-6
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
219-223
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Univ Quebec Outaouais
Datum konání akce
4. 5. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000326748000046