Electrophysiological Biomarkers of Epileptic Tissue in Human Brain Epilepsy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F22%3A10455095" target="_blank" >RIV/00064203:_____/22:10455095 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11130/22:10455095 RIV/68407700:21460/22:00362713 RIV/68407700:21730/22:00362713
Výsledek na webu
<a href="https://doi.org/10.1109/EHB55594.2022.9991682" target="_blank" >https://doi.org/10.1109/EHB55594.2022.9991682</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EHB55594.2022.9991682" target="_blank" >10.1109/EHB55594.2022.9991682</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electrophysiological Biomarkers of Epileptic Tissue in Human Brain Epilepsy
Popis výsledku v původním jazyce
Objective: Localization and mapping of seizure-generating brain tissue, i.e., seizure onset zone (SOZ) is essential to ensure an excellent patient outcome after surgical resection. The clinical approach is to record spontaneous seizures with intracranial EEG (iEEG) and determine SOZ. However, this practice is burdened by inter-patient variability, temporal variability, time-consuming data annotation, and long and variable waiting period for seizures to happen. Approach: Here, we use data from intracranial monitoring of 28 patients with neocortical focal epilepsy. Kurtosis, complexity, activity, mobility, mean, median, min, max, peak to peak, variance, standard deviation, root mean square, and interquartile were extracted as features from the time domain in two frequency bands (12-55 Hz and 55-80 Hz). The features were extracted from segments of inter-ictal iEEG from 8962 channels and tested by Wilcoxon rank sum test with Bonferroni correction of alpha to compare if mean of the feature differs in SOZ versus non-SOZ in each patient individually. Results: From all features, kurtosis, maximum, minimum, peak to peak, standard deviation, root mean square, variance, interquartile shown consistent differences between SOZ and non-SOZ channels across patients (p<0.0004). Conclusion: We analyzed several iEEG time domain features and we found features that significantly differ for data recorded from SOZ channels in most of the dataset with the same trend across patients. Such features can help to automatically differentiate between SOZ and non-SOZ electrodes and a combination of multiple features can yield better classification performance to discover epileptic foci using inter-ictal data without waiting for seizure to be recorded.
Název v anglickém jazyce
Electrophysiological Biomarkers of Epileptic Tissue in Human Brain Epilepsy
Popis výsledku anglicky
Objective: Localization and mapping of seizure-generating brain tissue, i.e., seizure onset zone (SOZ) is essential to ensure an excellent patient outcome after surgical resection. The clinical approach is to record spontaneous seizures with intracranial EEG (iEEG) and determine SOZ. However, this practice is burdened by inter-patient variability, temporal variability, time-consuming data annotation, and long and variable waiting period for seizures to happen. Approach: Here, we use data from intracranial monitoring of 28 patients with neocortical focal epilepsy. Kurtosis, complexity, activity, mobility, mean, median, min, max, peak to peak, variance, standard deviation, root mean square, and interquartile were extracted as features from the time domain in two frequency bands (12-55 Hz and 55-80 Hz). The features were extracted from segments of inter-ictal iEEG from 8962 channels and tested by Wilcoxon rank sum test with Bonferroni correction of alpha to compare if mean of the feature differs in SOZ versus non-SOZ in each patient individually. Results: From all features, kurtosis, maximum, minimum, peak to peak, standard deviation, root mean square, variance, interquartile shown consistent differences between SOZ and non-SOZ channels across patients (p<0.0004). Conclusion: We analyzed several iEEG time domain features and we found features that significantly differ for data recorded from SOZ channels in most of the dataset with the same trend across patients. Such features can help to automatically differentiate between SOZ and non-SOZ electrodes and a combination of multiple features can yield better classification performance to discover epileptic foci using inter-ictal data without waiting for seizure to be recorded.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
<a href="/cs/project/NU21J-08-00081" target="_blank" >NU21J-08-00081: Role hipokampu v neokortikálních epileptických sítích; předoperační diagnostika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 10th E-Health and Bioengineering Conference, EHB 2022
ISBN
978-1-66548-557-9
ISSN
2575-5137
e-ISSN
2575-5145
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Iasi, Romania
Datum konání akce
17. 11. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—