Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Electrophysiological Biomarkers of Epileptic Tissue in Human Brain Epilepsy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F22%3A10455095" target="_blank" >RIV/00064203:_____/22:10455095 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11130/22:10455095 RIV/68407700:21460/22:00362713 RIV/68407700:21730/22:00362713

  • Výsledek na webu

    <a href="https://doi.org/10.1109/EHB55594.2022.9991682" target="_blank" >https://doi.org/10.1109/EHB55594.2022.9991682</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/EHB55594.2022.9991682" target="_blank" >10.1109/EHB55594.2022.9991682</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Electrophysiological Biomarkers of Epileptic Tissue in Human Brain Epilepsy

  • Popis výsledku v původním jazyce

    Objective: Localization and mapping of seizure-generating brain tissue, i.e., seizure onset zone (SOZ) is essential to ensure an excellent patient outcome after surgical resection. The clinical approach is to record spontaneous seizures with intracranial EEG (iEEG) and determine SOZ. However, this practice is burdened by inter-patient variability, temporal variability, time-consuming data annotation, and long and variable waiting period for seizures to happen. Approach: Here, we use data from intracranial monitoring of 28 patients with neocortical focal epilepsy. Kurtosis, complexity, activity, mobility, mean, median, min, max, peak to peak, variance, standard deviation, root mean square, and interquartile were extracted as features from the time domain in two frequency bands (12-55 Hz and 55-80 Hz). The features were extracted from segments of inter-ictal iEEG from 8962 channels and tested by Wilcoxon rank sum test with Bonferroni correction of alpha to compare if mean of the feature differs in SOZ versus non-SOZ in each patient individually. Results: From all features, kurtosis, maximum, minimum, peak to peak, standard deviation, root mean square, variance, interquartile shown consistent differences between SOZ and non-SOZ channels across patients (p&lt;0.0004). Conclusion: We analyzed several iEEG time domain features and we found features that significantly differ for data recorded from SOZ channels in most of the dataset with the same trend across patients. Such features can help to automatically differentiate between SOZ and non-SOZ electrodes and a combination of multiple features can yield better classification performance to discover epileptic foci using inter-ictal data without waiting for seizure to be recorded.

  • Název v anglickém jazyce

    Electrophysiological Biomarkers of Epileptic Tissue in Human Brain Epilepsy

  • Popis výsledku anglicky

    Objective: Localization and mapping of seizure-generating brain tissue, i.e., seizure onset zone (SOZ) is essential to ensure an excellent patient outcome after surgical resection. The clinical approach is to record spontaneous seizures with intracranial EEG (iEEG) and determine SOZ. However, this practice is burdened by inter-patient variability, temporal variability, time-consuming data annotation, and long and variable waiting period for seizures to happen. Approach: Here, we use data from intracranial monitoring of 28 patients with neocortical focal epilepsy. Kurtosis, complexity, activity, mobility, mean, median, min, max, peak to peak, variance, standard deviation, root mean square, and interquartile were extracted as features from the time domain in two frequency bands (12-55 Hz and 55-80 Hz). The features were extracted from segments of inter-ictal iEEG from 8962 channels and tested by Wilcoxon rank sum test with Bonferroni correction of alpha to compare if mean of the feature differs in SOZ versus non-SOZ in each patient individually. Results: From all features, kurtosis, maximum, minimum, peak to peak, standard deviation, root mean square, variance, interquartile shown consistent differences between SOZ and non-SOZ channels across patients (p&lt;0.0004). Conclusion: We analyzed several iEEG time domain features and we found features that significantly differ for data recorded from SOZ channels in most of the dataset with the same trend across patients. Such features can help to automatically differentiate between SOZ and non-SOZ electrodes and a combination of multiple features can yield better classification performance to discover epileptic foci using inter-ictal data without waiting for seizure to be recorded.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/NU21J-08-00081" target="_blank" >NU21J-08-00081: Role hipokampu v neokortikálních epileptických sítích; předoperační diagnostika</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2022 10th E-Health and Bioengineering Conference, EHB 2022

  • ISBN

    978-1-66548-557-9

  • ISSN

    2575-5137

  • e-ISSN

    2575-5145

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Iasi, Romania

  • Datum konání akce

    17. 11. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku