Untargeted metabolomic analysis of urine samples in the diagnosis of some inherited metabolic disorders
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00098892%3A_____%2F15%3AN0000007" target="_blank" >RIV/00098892:_____/15:N0000007 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/15:33158013 RIV/61989592:15110/15:33158013
Výsledek na webu
<a href="https://biomed.papers.upol.cz/pdfs/bio/2015/04/11.pdf" target="_blank" >https://biomed.papers.upol.cz/pdfs/bio/2015/04/11.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5507/bp.2014.048" target="_blank" >10.5507/bp.2014.048</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Untargeted metabolomic analysis of urine samples in the diagnosis of some inherited metabolic disorders
Popis výsledku v původním jazyce
Background. Metabolomics is becoming an important tool in clinical research and the diagnosis of human diseases. It has been used in the diagnosis of inherited metabolic disorders with pronounced biochemical abnormalities. The aim of this study was to determine if it could be applied in the diagnosis of inherited metabolic disorders (IMDs) with less clear biochemical profiles from urine samples using an untargeted metabolomic approach. Methods. A total of 14 control urine samples and 21 samples from infants with cystinuria, maple syrup urine disease, adenylosuccinate lyase deficiency and galactosemia were tested. Samples were analyzed by liquid chromatography on aminopropyl column in aqueous normal phase separation system using gradient elution of acetonitrile/ammonium acetate. Detection was performed by time-of-flight mass spectrometer fitted with electrospray ionisation in positive mode. The data were statistically processed using principal component analysis (PCA), principal component discriminant function analysis (PCA-DFA) and partial least squares (PLS) regression. Results. All patient samples were first distinguished from controls using unsupervised PCA. Discrimination of the patient samples was then unambiguously verified using supervised PCA-DFA. Known markers of the diseases in question were successfully confirmed and a potential new marker emerged from the PLS regression. Conclusion. This study showed that untargeted metabolomics can be applied in the diagnosis of mild IMDs with less clear biochemical profiles.
Název v anglickém jazyce
Untargeted metabolomic analysis of urine samples in the diagnosis of some inherited metabolic disorders
Popis výsledku anglicky
Background. Metabolomics is becoming an important tool in clinical research and the diagnosis of human diseases. It has been used in the diagnosis of inherited metabolic disorders with pronounced biochemical abnormalities. The aim of this study was to determine if it could be applied in the diagnosis of inherited metabolic disorders (IMDs) with less clear biochemical profiles from urine samples using an untargeted metabolomic approach. Methods. A total of 14 control urine samples and 21 samples from infants with cystinuria, maple syrup urine disease, adenylosuccinate lyase deficiency and galactosemia were tested. Samples were analyzed by liquid chromatography on aminopropyl column in aqueous normal phase separation system using gradient elution of acetonitrile/ammonium acetate. Detection was performed by time-of-flight mass spectrometer fitted with electrospray ionisation in positive mode. The data were statistically processed using principal component analysis (PCA), principal component discriminant function analysis (PCA-DFA) and partial least squares (PLS) regression. Results. All patient samples were first distinguished from controls using unsupervised PCA. Discrimination of the patient samples was then unambiguously verified using supervised PCA-DFA. Known markers of the diseases in question were successfully confirmed and a potential new marker emerged from the PLS regression. Conclusion. This study showed that untargeted metabolomics can be applied in the diagnosis of mild IMDs with less clear biochemical profiles.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30202 - Endocrinology and metabolism (including diabetes, hormones)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Papers-Olomouc
ISSN
1213-8118
e-ISSN
1804-7521
Svazek periodika
159
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
4
Strana od-do
582-585
Kód UT WoS článku
000366566700011
EID výsledku v databázi Scopus
2-s2.0-84949651155