Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Untargeted metabolomic analysis of urine samples in the diagnosis of some inherited metabolic disorders 

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00098892%3A_____%2F15%3AN0000007" target="_blank" >RIV/00098892:_____/15:N0000007 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15310/15:33158013 RIV/61989592:15110/15:33158013

  • Výsledek na webu

    <a href="https://biomed.papers.upol.cz/pdfs/bio/2015/04/11.pdf" target="_blank" >https://biomed.papers.upol.cz/pdfs/bio/2015/04/11.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5507/bp.2014.048" target="_blank" >10.5507/bp.2014.048</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Untargeted metabolomic analysis of urine samples in the diagnosis of some inherited metabolic disorders 

  • Popis výsledku v původním jazyce

    Background. Metabolomics is becoming an important tool in clinical research and the diagnosis of human diseases. It has been used in the diagnosis of inherited metabolic disorders with pronounced biochemical abnormalities. The aim of this study was to determine if it could be applied in the diagnosis of inherited metabolic disorders (IMDs) with less clear biochemical profiles from urine samples using an untargeted metabolomic approach. Methods. A total of 14 control urine samples and 21 samples from infants with cystinuria, maple syrup urine disease, adenylosuccinate lyase deficiency and galactosemia were tested. Samples were analyzed by liquid chromatography on aminopropyl column in aqueous normal phase separation system using gradient elution of acetonitrile/ammonium acetate. Detection was performed by time-of-flight mass spectrometer fitted with electrospray ionisation in positive mode. The data were statistically processed using principal component analysis (PCA), principal component discriminant function analysis (PCA-DFA) and partial least squares (PLS) regression. Results. All patient samples were first distinguished from controls using unsupervised PCA. Discrimination of the patient samples was then unambiguously verified using supervised PCA-DFA. Known markers of the diseases in question were successfully confirmed and a potential new marker emerged from the PLS regression. Conclusion. This study showed that untargeted metabolomics can be applied in the diagnosis of mild IMDs with less clear biochemical profiles.

  • Název v anglickém jazyce

    Untargeted metabolomic analysis of urine samples in the diagnosis of some inherited metabolic disorders 

  • Popis výsledku anglicky

    Background. Metabolomics is becoming an important tool in clinical research and the diagnosis of human diseases. It has been used in the diagnosis of inherited metabolic disorders with pronounced biochemical abnormalities. The aim of this study was to determine if it could be applied in the diagnosis of inherited metabolic disorders (IMDs) with less clear biochemical profiles from urine samples using an untargeted metabolomic approach. Methods. A total of 14 control urine samples and 21 samples from infants with cystinuria, maple syrup urine disease, adenylosuccinate lyase deficiency and galactosemia were tested. Samples were analyzed by liquid chromatography on aminopropyl column in aqueous normal phase separation system using gradient elution of acetonitrile/ammonium acetate. Detection was performed by time-of-flight mass spectrometer fitted with electrospray ionisation in positive mode. The data were statistically processed using principal component analysis (PCA), principal component discriminant function analysis (PCA-DFA) and partial least squares (PLS) regression. Results. All patient samples were first distinguished from controls using unsupervised PCA. Discrimination of the patient samples was then unambiguously verified using supervised PCA-DFA. Known markers of the diseases in question were successfully confirmed and a potential new marker emerged from the PLS regression. Conclusion. This study showed that untargeted metabolomics can be applied in the diagnosis of mild IMDs with less clear biochemical profiles.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30202 - Endocrinology and metabolism (including diabetes, hormones)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Biomedical Papers-Olomouc  

  • ISSN

    1213-8118

  • e-ISSN

    1804-7521

  • Svazek periodika

    159

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    4

  • Strana od-do

    582-585

  • Kód UT WoS článku

    000366566700011

  • EID výsledku v databázi Scopus

    2-s2.0-84949651155