Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

From big data to better patient outcomes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00098892%3A_____%2F23%3A10157460" target="_blank" >RIV/00098892:_____/23:10157460 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15110/23:73616681

  • Výsledek na webu

    <a href="https://www.degruyter.com/document/doi/10.1515/cclm-2022-1096/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/cclm-2022-1096/html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/cclm-2022-1096" target="_blank" >10.1515/cclm-2022-1096</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    From big data to better patient outcomes

  • Popis výsledku v původním jazyce

    Among medical specialties, laboratory medicine is the largest producer of structured data and must play a crucial role for the efficient and safe implementation of big data and artificial intelligence in healthcare. The area of personalized therapies and precision medicine has now arrived, with huge data sets not only used for experimental and research approaches, but also in the &quot;real world&quot;. Analysis of real world data requires development of legal, procedural and technical infrastructure. The integration of all clinical data sets for any given patient is important and necessary in order to develop a patient-centered treatment approach. Data-driven research comes with its own challenges and solutions. The Findability, Accessibility, Interoperability, and Reusability (FAIR) Guiding Principles provide guidelines to make data findable, accessible, interoperable and reusable to the research community. Federated learning, standards and ontologies are useful to improve robustness of artificial intelligence algorithms working on big data and to increase trust in these algorithms. When dealing with big data, the univariate statistical approach changes to multivariate statistical methods significantly shifting the potential of big data. Combining multiple omics gives previously unsuspected information and provides understanding of scientific questions, an approach which is also called the systems biology approach. Big data and artificial intelligence also offer opportunities for laboratories and the In Vitro Diagnostic industry to optimize the productivity of the laboratory, the quality of laboratory results and ultimately patient outcomes, through tools such as predictive maintenance and &quot;moving average&quot; based on the aggregate of patient results.

  • Název v anglickém jazyce

    From big data to better patient outcomes

  • Popis výsledku anglicky

    Among medical specialties, laboratory medicine is the largest producer of structured data and must play a crucial role for the efficient and safe implementation of big data and artificial intelligence in healthcare. The area of personalized therapies and precision medicine has now arrived, with huge data sets not only used for experimental and research approaches, but also in the &quot;real world&quot;. Analysis of real world data requires development of legal, procedural and technical infrastructure. The integration of all clinical data sets for any given patient is important and necessary in order to develop a patient-centered treatment approach. Data-driven research comes with its own challenges and solutions. The Findability, Accessibility, Interoperability, and Reusability (FAIR) Guiding Principles provide guidelines to make data findable, accessible, interoperable and reusable to the research community. Federated learning, standards and ontologies are useful to improve robustness of artificial intelligence algorithms working on big data and to increase trust in these algorithms. When dealing with big data, the univariate statistical approach changes to multivariate statistical methods significantly shifting the potential of big data. Combining multiple omics gives previously unsuspected information and provides understanding of scientific questions, an approach which is also called the systems biology approach. Big data and artificial intelligence also offer opportunities for laboratories and the In Vitro Diagnostic industry to optimize the productivity of the laboratory, the quality of laboratory results and ultimately patient outcomes, through tools such as predictive maintenance and &quot;moving average&quot; based on the aggregate of patient results.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10406 - Analytical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Clinical Chemistry and Laboratory Medicine

  • ISSN

    1434-6621

  • e-ISSN

    1437-4331

  • Svazek periodika

    61

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    7

  • Strana od-do

    580-586

  • Kód UT WoS článku

    000901733700001

  • EID výsledku v databázi Scopus

    2-s2.0-85145208418