From big data to better patient outcomes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00098892%3A_____%2F23%3A10157460" target="_blank" >RIV/00098892:_____/23:10157460 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15110/23:73616681
Výsledek na webu
<a href="https://www.degruyter.com/document/doi/10.1515/cclm-2022-1096/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/cclm-2022-1096/html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/cclm-2022-1096" target="_blank" >10.1515/cclm-2022-1096</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
From big data to better patient outcomes
Popis výsledku v původním jazyce
Among medical specialties, laboratory medicine is the largest producer of structured data and must play a crucial role for the efficient and safe implementation of big data and artificial intelligence in healthcare. The area of personalized therapies and precision medicine has now arrived, with huge data sets not only used for experimental and research approaches, but also in the "real world". Analysis of real world data requires development of legal, procedural and technical infrastructure. The integration of all clinical data sets for any given patient is important and necessary in order to develop a patient-centered treatment approach. Data-driven research comes with its own challenges and solutions. The Findability, Accessibility, Interoperability, and Reusability (FAIR) Guiding Principles provide guidelines to make data findable, accessible, interoperable and reusable to the research community. Federated learning, standards and ontologies are useful to improve robustness of artificial intelligence algorithms working on big data and to increase trust in these algorithms. When dealing with big data, the univariate statistical approach changes to multivariate statistical methods significantly shifting the potential of big data. Combining multiple omics gives previously unsuspected information and provides understanding of scientific questions, an approach which is also called the systems biology approach. Big data and artificial intelligence also offer opportunities for laboratories and the In Vitro Diagnostic industry to optimize the productivity of the laboratory, the quality of laboratory results and ultimately patient outcomes, through tools such as predictive maintenance and "moving average" based on the aggregate of patient results.
Název v anglickém jazyce
From big data to better patient outcomes
Popis výsledku anglicky
Among medical specialties, laboratory medicine is the largest producer of structured data and must play a crucial role for the efficient and safe implementation of big data and artificial intelligence in healthcare. The area of personalized therapies and precision medicine has now arrived, with huge data sets not only used for experimental and research approaches, but also in the "real world". Analysis of real world data requires development of legal, procedural and technical infrastructure. The integration of all clinical data sets for any given patient is important and necessary in order to develop a patient-centered treatment approach. Data-driven research comes with its own challenges and solutions. The Findability, Accessibility, Interoperability, and Reusability (FAIR) Guiding Principles provide guidelines to make data findable, accessible, interoperable and reusable to the research community. Federated learning, standards and ontologies are useful to improve robustness of artificial intelligence algorithms working on big data and to increase trust in these algorithms. When dealing with big data, the univariate statistical approach changes to multivariate statistical methods significantly shifting the potential of big data. Combining multiple omics gives previously unsuspected information and provides understanding of scientific questions, an approach which is also called the systems biology approach. Big data and artificial intelligence also offer opportunities for laboratories and the In Vitro Diagnostic industry to optimize the productivity of the laboratory, the quality of laboratory results and ultimately patient outcomes, through tools such as predictive maintenance and "moving average" based on the aggregate of patient results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Clinical Chemistry and Laboratory Medicine
ISSN
1434-6621
e-ISSN
1437-4331
Svazek periodika
61
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
7
Strana od-do
580-586
Kód UT WoS článku
000901733700001
EID výsledku v databázi Scopus
2-s2.0-85145208418