Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F16%3A00066187" target="_blank" >RIV/00159816:_____/16:00066187 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14110/16:00088939 RIV/00216305:26220/16:PU118769

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.artmed.2016.01.004" target="_blank" >http://dx.doi.org/10.1016/j.artmed.2016.01.004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.artmed.2016.01.004" target="_blank" >10.1016/j.artmed.2016.01.004</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease

  • Popis výsledku v původním jazyce

    Objective: We present the PaHaW Parkinson's disease handwriting database, consisting of handwriting samples from Parkinson's disease (PD) patients and healthy controls. Our goal is to show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD. Methods and material: The database contains records from 37 PD patients and 38 healthy controls performing eight different handwriting tasks. The tasks include drawing an Archimedean spiral, repetitively writing orthographically simple syllables and words, and writing of a sentence. In addition to the conventional kinematic features related to the dynamics of handwriting, we investigated new pressure features based on the pressure exerted on the writing surface. To discriminate between PD patients and healthy subjects, three different classifiers were compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector machines (SVM). Results: For predicting PD based on kinematic and pressure features of handwriting, the best performing model was SVM with classification accuracy of P-acc = 81.3% (sensitivity P-sen = 87.4% and specificity of P-spe = 80.9%). When evaluated separately, pressure features proved to be relevant for PD diagnosis, yielding P-acc = 82.5% compared to P-acc = 75.4% using kinematic features. Conclusion: Experimental results showed that an analysis of kinematic and pressure features during handwriting can help assess subtle characteristics of handwriting and discriminate between PD patients and healthy controls.

  • Název v anglickém jazyce

    Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease

  • Popis výsledku anglicky

    Objective: We present the PaHaW Parkinson's disease handwriting database, consisting of handwriting samples from Parkinson's disease (PD) patients and healthy controls. Our goal is to show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD. Methods and material: The database contains records from 37 PD patients and 38 healthy controls performing eight different handwriting tasks. The tasks include drawing an Archimedean spiral, repetitively writing orthographically simple syllables and words, and writing of a sentence. In addition to the conventional kinematic features related to the dynamics of handwriting, we investigated new pressure features based on the pressure exerted on the writing surface. To discriminate between PD patients and healthy subjects, three different classifiers were compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector machines (SVM). Results: For predicting PD based on kinematic and pressure features of handwriting, the best performing model was SVM with classification accuracy of P-acc = 81.3% (sensitivity P-sen = 87.4% and specificity of P-spe = 80.9%). When evaluated separately, pressure features proved to be relevant for PD diagnosis, yielding P-acc = 82.5% compared to P-acc = 75.4% using kinematic features. Conclusion: Experimental results showed that an analysis of kinematic and pressure features during handwriting can help assess subtle characteristics of handwriting and discriminate between PD patients and healthy controls.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    FH - Neurologie, neurochirurgie, neurovědy

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ARTIFICIAL INTELLIGENCE IN MEDICINE

  • ISSN

    0933-3657

  • e-ISSN

  • Svazek periodika

    67

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    8

  • Strana od-do

    39-46

  • Kód UT WoS článku

    000374078900003

  • EID výsledku v databázi Scopus