Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F16%3A00066187" target="_blank" >RIV/00159816:_____/16:00066187 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14110/16:00088939 RIV/00216305:26220/16:PU118769
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.artmed.2016.01.004" target="_blank" >http://dx.doi.org/10.1016/j.artmed.2016.01.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.artmed.2016.01.004" target="_blank" >10.1016/j.artmed.2016.01.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease
Popis výsledku v původním jazyce
Objective: We present the PaHaW Parkinson's disease handwriting database, consisting of handwriting samples from Parkinson's disease (PD) patients and healthy controls. Our goal is to show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD. Methods and material: The database contains records from 37 PD patients and 38 healthy controls performing eight different handwriting tasks. The tasks include drawing an Archimedean spiral, repetitively writing orthographically simple syllables and words, and writing of a sentence. In addition to the conventional kinematic features related to the dynamics of handwriting, we investigated new pressure features based on the pressure exerted on the writing surface. To discriminate between PD patients and healthy subjects, three different classifiers were compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector machines (SVM). Results: For predicting PD based on kinematic and pressure features of handwriting, the best performing model was SVM with classification accuracy of P-acc = 81.3% (sensitivity P-sen = 87.4% and specificity of P-spe = 80.9%). When evaluated separately, pressure features proved to be relevant for PD diagnosis, yielding P-acc = 82.5% compared to P-acc = 75.4% using kinematic features. Conclusion: Experimental results showed that an analysis of kinematic and pressure features during handwriting can help assess subtle characteristics of handwriting and discriminate between PD patients and healthy controls.
Název v anglickém jazyce
Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease
Popis výsledku anglicky
Objective: We present the PaHaW Parkinson's disease handwriting database, consisting of handwriting samples from Parkinson's disease (PD) patients and healthy controls. Our goal is to show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD. Methods and material: The database contains records from 37 PD patients and 38 healthy controls performing eight different handwriting tasks. The tasks include drawing an Archimedean spiral, repetitively writing orthographically simple syllables and words, and writing of a sentence. In addition to the conventional kinematic features related to the dynamics of handwriting, we investigated new pressure features based on the pressure exerted on the writing surface. To discriminate between PD patients and healthy subjects, three different classifiers were compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector machines (SVM). Results: For predicting PD based on kinematic and pressure features of handwriting, the best performing model was SVM with classification accuracy of P-acc = 81.3% (sensitivity P-sen = 87.4% and specificity of P-spe = 80.9%). When evaluated separately, pressure features proved to be relevant for PD diagnosis, yielding P-acc = 82.5% compared to P-acc = 75.4% using kinematic features. Conclusion: Experimental results showed that an analysis of kinematic and pressure features during handwriting can help assess subtle characteristics of handwriting and discriminate between PD patients and healthy controls.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FH - Neurologie, neurochirurgie, neurovědy
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ARTIFICIAL INTELLIGENCE IN MEDICINE
ISSN
0933-3657
e-ISSN
—
Svazek periodika
67
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
39-46
Kód UT WoS článku
000374078900003
EID výsledku v databázi Scopus
—