Advanced Parkinson's Disease Dysgraphia Analysis Based on Fractional Derivatives of Online Handwriting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU128792" target="_blank" >RIV/00216305:26220/18:PU128792 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICUMT.2018.8631265" target="_blank" >http://dx.doi.org/10.1109/ICUMT.2018.8631265</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICUMT.2018.8631265" target="_blank" >10.1109/ICUMT.2018.8631265</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced Parkinson's Disease Dysgraphia Analysis Based on Fractional Derivatives of Online Handwriting
Popis výsledku v původním jazyce
Parkinson's disease (PD) is one of the most frequent neurodegenerative disorder with progressive decline in several motor and non-motor skills. Due to time-consuming and partially subjective conventional PD diagnosis, several more effective approaches based on signal processing and machine learning, e.,g. online handwriting analysis, have been proposed. This paper introduces a~new methodology of PD dysgraphia analysis based on fractional derivatives applied in PD handwriting quantification. The proposed methodology was evaluated on a~database that consists 33~PD patients and 36~healthy controls who performed several handwriting tasks. Employing random forests classifier in combination with 5 kinematic features based on fractional-order derivatives we reached 90,% classification accuracy, 89,% sensitivity, and 91,% specificity. In comparison with the results of other related works dealing with the same database, the proposed approach brings improvements in PD dysgraphia diagnosis and confirms the impact of fractional derivatives in kinematic analysis.
Název v anglickém jazyce
Advanced Parkinson's Disease Dysgraphia Analysis Based on Fractional Derivatives of Online Handwriting
Popis výsledku anglicky
Parkinson's disease (PD) is one of the most frequent neurodegenerative disorder with progressive decline in several motor and non-motor skills. Due to time-consuming and partially subjective conventional PD diagnosis, several more effective approaches based on signal processing and machine learning, e.,g. online handwriting analysis, have been proposed. This paper introduces a~new methodology of PD dysgraphia analysis based on fractional derivatives applied in PD handwriting quantification. The proposed methodology was evaluated on a~database that consists 33~PD patients and 36~healthy controls who performed several handwriting tasks. Employing random forests classifier in combination with 5 kinematic features based on fractional-order derivatives we reached 90,% classification accuracy, 89,% sensitivity, and 91,% specificity. In comparison with the results of other related works dealing with the same database, the proposed approach brings improvements in PD dysgraphia diagnosis and confirms the impact of fractional derivatives in kinematic analysis.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
ISBN
978-1-5386-9361-2
ISSN
2157-023X
e-ISSN
—
Počet stran výsledku
6
Strana od-do
77-82
Název nakladatele
Neuveden
Místo vydání
Moskva, Rusko
Místo konání akce
Moskva
Datum konání akce
5. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000459238500067