Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploration of Various Fractional Order Derivatives in Parkinson's Disease Dysgraphia Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F22%3A00132034" target="_blank" >RIV/00216224:14110/22:00132034 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-19745-1_23" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-19745-1_23</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-19745-1_23" target="_blank" >10.1007/978-3-031-19745-1_23</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploration of Various Fractional Order Derivatives in Parkinson's Disease Dysgraphia Analysis

  • Popis výsledku v původním jazyce

    Parkinson's disease (PD) is a common neurodegenerative disorder with a prevalence rate estimated to 2.0% for people aged over 65 years. Cardinal motor symptoms of PD such as rigidity and bradykinesia affect the muscles involved in the handwriting process resulting in handwriting abnormalities called PD dysgraphia. Nowadays, online handwritten signal (signal with temporal information) acquired by the digitizing tablets is the most advanced approach of graphomotor difficulties analysis. Although the basic kinematic features were proved to effectively quantify the symptoms of PD dysgraphia, a recent research identified that the theory of fractional calculus can be used to improve the graphomotor difficulties analysis. Therefore, in this study, we follow up on our previous research, and we aim to explore the utilization of various approaches of fractional order derivative (FD) in the analysis of PD dysgraphia. For this purpose, we used the repetitive loops task from the Parkinson's disease handwriting database (PaHaW). Handwritten signals were parametrized by the kinematic features employing three FD approximations: Grunwald-Letnikov's, Riemann-Liouville's, and Caputo's. Results of the correlation analysis revealed a significant relationship between the clinical state and the handwriting features based on the velocity. The extracted features by Caputo's FD approximation outperformed the rest of the analyzed FD approaches. This was also confirmed by the results of the classification analysis, where the best model trained by Caputo's handwriting features resulted in a balanced accuracy of 79.73% with a sensitivity of 83.78% and a specificity of 75.68%.

  • Název v anglickém jazyce

    Exploration of Various Fractional Order Derivatives in Parkinson's Disease Dysgraphia Analysis

  • Popis výsledku anglicky

    Parkinson's disease (PD) is a common neurodegenerative disorder with a prevalence rate estimated to 2.0% for people aged over 65 years. Cardinal motor symptoms of PD such as rigidity and bradykinesia affect the muscles involved in the handwriting process resulting in handwriting abnormalities called PD dysgraphia. Nowadays, online handwritten signal (signal with temporal information) acquired by the digitizing tablets is the most advanced approach of graphomotor difficulties analysis. Although the basic kinematic features were proved to effectively quantify the symptoms of PD dysgraphia, a recent research identified that the theory of fractional calculus can be used to improve the graphomotor difficulties analysis. Therefore, in this study, we follow up on our previous research, and we aim to explore the utilization of various approaches of fractional order derivative (FD) in the analysis of PD dysgraphia. For this purpose, we used the repetitive loops task from the Parkinson's disease handwriting database (PaHaW). Handwritten signals were parametrized by the kinematic features employing three FD approximations: Grunwald-Letnikov's, Riemann-Liouville's, and Caputo's. Results of the correlation analysis revealed a significant relationship between the clinical state and the handwriting features based on the velocity. The extracted features by Caputo's FD approximation outperformed the rest of the analyzed FD approaches. This was also confirmed by the results of the classification analysis, where the best model trained by Caputo's handwriting features resulted in a balanced accuracy of 79.73% with a sensitivity of 83.78% and a specificity of 75.68%.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    30210 - Clinical neurology

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Intertwining Graphonomics with Human Movements

  • ISBN

    9783031197444

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    14

  • Strana od-do

    308-321

  • Název nakladatele

    SPRINGER INTERNATIONAL PUBLISHING AG

  • Místo vydání

    CHAM

  • Místo konání akce

    Las Palmas de Gran Canaria

  • Datum konání akce

    7. 9. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000913319000023