Advanced Analysis of Online Handwriting in a Multilingual Cohort of Patients with Parkinson's Disease
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU131710" target="_blank" >RIV/00216305:26220/19:PU131710 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced Analysis of Online Handwriting in a Multilingual Cohort of Patients with Parkinson's Disease
Popis výsledku v původním jazyce
The majority of Parkinson’s disease (PD) patients suffer from handwriting abnormalities commonly called as Parkinsonic dysgraphia. Several approaches of PD dysgraphia analysis exist, e.g. based on online handwriting processing. However, a small and unilingual cohort of PD patients is often an issue in quantitative PD dysgraphia analysis studies. Therefore, in this work, we aim to perform a discrimination analysis in a multilingual cohort of 73 PD patients and 48 healthy controls (Spanish and Czech). For this purpose, we extracted advanced handwriting features based on fractional order derivatives (FD). Discrimination power of the advanced FD-based features was evaluated by Mann-Whitney U test and random forests classifier. We reached 82 % classification accuracy (86 % sensitivity, 77 % specificity) in the multilingual cohort. In addition, we observed high discrimination power of the FD-based parameters and proofed the high impact of online handwriting processing in cross-cultural PD dysgraphia analysis studies.
Název v anglickém jazyce
Advanced Analysis of Online Handwriting in a Multilingual Cohort of Patients with Parkinson's Disease
Popis výsledku anglicky
The majority of Parkinson’s disease (PD) patients suffer from handwriting abnormalities commonly called as Parkinsonic dysgraphia. Several approaches of PD dysgraphia analysis exist, e.g. based on online handwriting processing. However, a small and unilingual cohort of PD patients is often an issue in quantitative PD dysgraphia analysis studies. Therefore, in this work, we aim to perform a discrimination analysis in a multilingual cohort of 73 PD patients and 48 healthy controls (Spanish and Czech). For this purpose, we extracted advanced handwriting features based on fractional order derivatives (FD). Discrimination power of the advanced FD-based features was evaluated by Mann-Whitney U test and random forests classifier. We reached 82 % classification accuracy (86 % sensitivity, 77 % specificity) in the multilingual cohort. In addition, we observed high discrimination power of the FD-based parameters and proofed the high impact of online handwriting processing in cross-cultural PD dysgraphia analysis studies.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Signal Processing and Artificial Intelligence: Proceedings of the 1st International Conference on Advances in Signal Processing and Artificial Intelligence
ISBN
978-84-09-10127-6
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
144-147
Název nakladatele
International Frequency Sensor Association (IFSA) Publishing, S. L.
Místo vydání
Barcelona, Spain
Místo konání akce
Barcelona
Datum konání akce
20. 3. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—