Analysis of Parkinson’s Disease Dysgraphia Based on Optimized Fractional Order Derivative Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU133018" target="_blank" >RIV/00216305:26220/19:PU133018 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8903088" target="_blank" >https://ieeexplore.ieee.org/document/8903088</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/EUSIPCO.2019.8903088" target="_blank" >10.23919/EUSIPCO.2019.8903088</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Parkinson’s Disease Dysgraphia Based on Optimized Fractional Order Derivative Features
Popis výsledku v původním jazyce
Parkinson’s disease (PD) is a common neurodegenerative disorder with prevalence rate estimated to 1.5% for people age over 65 years. The majority of PD patients is associated with handwriting abnormalities called PD dysgraphia, which is linked with rigidity and bradykinesia of muscles involved in the handwriting process. One of the effective approaches of quantitative PD dysgraphia analysis is based on online handwriting processing. In the frame of this study we aim to deeply evaluate and optimize advanced PD handwriting quantification based on fractional order derivatives (FD). For this purpose, we used 37 PD patients and 38 healthy controls from the PaHaW (PD handwriting database). The FD based features were employed in classification and regression analysis (using gradient boosted trees), and evaluated in terms of their discrimination power and abilities to assess severity of PD. The results suggest that the most discriminative and descriptive information provide FD based features extracted from a repetitive loop task or a sentence copy task (maximum sensitivity/specificity = 76 %, error in severity assessment = 14 %, error in PD duration estimation = 22 %). Next, we identified two optimal ranges for the order of fractional derivative, a = 0.05 – 0.45 and a = 0.65 – 0.80. Finally, we observed that inclusion of pressure, azimuth, and tilt together with kinematic features into mathematical modeling has no influence (positive or negative) on classification performance, however, there was a notable improvement in the estimation of PD duration.
Název v anglickém jazyce
Analysis of Parkinson’s Disease Dysgraphia Based on Optimized Fractional Order Derivative Features
Popis výsledku anglicky
Parkinson’s disease (PD) is a common neurodegenerative disorder with prevalence rate estimated to 1.5% for people age over 65 years. The majority of PD patients is associated with handwriting abnormalities called PD dysgraphia, which is linked with rigidity and bradykinesia of muscles involved in the handwriting process. One of the effective approaches of quantitative PD dysgraphia analysis is based on online handwriting processing. In the frame of this study we aim to deeply evaluate and optimize advanced PD handwriting quantification based on fractional order derivatives (FD). For this purpose, we used 37 PD patients and 38 healthy controls from the PaHaW (PD handwriting database). The FD based features were employed in classification and regression analysis (using gradient boosted trees), and evaluated in terms of their discrimination power and abilities to assess severity of PD. The results suggest that the most discriminative and descriptive information provide FD based features extracted from a repetitive loop task or a sentence copy task (maximum sensitivity/specificity = 76 %, error in severity assessment = 14 %, error in PD duration estimation = 22 %). Next, we identified two optimal ranges for the order of fractional derivative, a = 0.05 – 0.45 and a = 0.65 – 0.80. Finally, we observed that inclusion of pressure, azimuth, and tilt together with kinematic features into mathematical modeling has no influence (positive or negative) on classification performance, however, there was a notable improvement in the estimation of PD duration.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 27th European Signal Processing Conference (EUSIPCO)
ISBN
978-9-0827-9703-9
ISSN
2076-1465
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
A Coruña
Datum konání akce
2. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000604567700409