MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F16%3A00068460" target="_blank" >RIV/00159816:_____/16:00068460 - isvavai.cz</a>
Výsledek na webu
<a href="https://aapm.onlinelibrary.wiley.com/doi/full/10.1118/1.4948668" target="_blank" >https://aapm.onlinelibrary.wiley.com/doi/full/10.1118/1.4948668</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1118/1.4948668" target="_blank" >10.1118/1.4948668</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
Popis výsledku v původním jazyce
Purpose: Imaging biomarker research focuses on discovering relationships between radiological features and histological findings. In glioblastoma patients, methylation of the O-6-methylguanine methyltransferase (MGMT) gene promoter is positively correlated with an increased effectiveness of current standard of care. In this paper, the authors investigate texture features as potential imaging biomarkers for capturing the MGMT methylation status of glioblastoma multiforme (GBM) tumors when combined with supervised classification schemes. Methods: A retrospective study of 155 GBM patients with known MGMT methylation status was conducted. Co-occurrence and run length texture features were calculated, and both support vector machines (SVMs) and random forest classifiers were used to predict MGMT methylation status. Results: The best classification system (an SVM-based classifier) had a maximum area under the receiver-operating characteristic (ROC) curve of 0.85 (95% CI: 0.78-0.91) using four texture features (correlation, energy, entropy, and local intensity) originating from the T2-weighted images, yielding at the optimal threshold of the ROC curve, a sensitivity of 0.803 and a specificity of 0.813. Conclusions: Results show that supervised machine learning of MRI texture features can predict MGMT methylation status in preoperative GBM tumors, thus providing a new noninvasive imaging biomarker. (C) 2016 Author(s).
Název v anglickém jazyce
MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
Popis výsledku anglicky
Purpose: Imaging biomarker research focuses on discovering relationships between radiological features and histological findings. In glioblastoma patients, methylation of the O-6-methylguanine methyltransferase (MGMT) gene promoter is positively correlated with an increased effectiveness of current standard of care. In this paper, the authors investigate texture features as potential imaging biomarkers for capturing the MGMT methylation status of glioblastoma multiforme (GBM) tumors when combined with supervised classification schemes. Methods: A retrospective study of 155 GBM patients with known MGMT methylation status was conducted. Co-occurrence and run length texture features were calculated, and both support vector machines (SVMs) and random forest classifiers were used to predict MGMT methylation status. Results: The best classification system (an SVM-based classifier) had a maximum area under the receiver-operating characteristic (ROC) curve of 0.85 (95% CI: 0.78-0.91) using four texture features (correlation, energy, entropy, and local intensity) originating from the T2-weighted images, yielding at the optimal threshold of the ROC curve, a sensitivity of 0.803 and a specificity of 0.813. Conclusions: Results show that supervised machine learning of MRI texture features can predict MGMT methylation status in preoperative GBM tumors, thus providing a new noninvasive imaging biomarker. (C) 2016 Author(s).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30224 - Radiology, nuclear medicine and medical imaging
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.100%2F02%2F0123" target="_blank" >ED1.100/02/0123: Fakultní nemocnice u sv. Anny v Brně - Mezinárodní centrum klinického výzkumu (FNUSA - ICRC)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Medical physics
ISSN
0094-2405
e-ISSN
—
Svazek periodika
43
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
2835-2844
Kód UT WoS článku
000401300500018
EID výsledku v databázi Scopus
—