EFFECTS OF SUBSTRATE MECHANICS AND NANOTOPOGRAPHY ON HUMAN MESENCHYMAL STEM CELLS MECHANOSOME
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F18%3A00070387" target="_blank" >RIV/00159816:_____/18:00070387 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EFFECTS OF SUBSTRATE MECHANICS AND NANOTOPOGRAPHY ON HUMAN MESENCHYMAL STEM CELLS MECHANOSOME
Popis výsledku v původním jazyce
The ability of cells to perceive the mechanics and nanostructure of the extracellular matrix (ECM) relies on the activity of a number of intracellular proteins, collectively defined as mechanosome. By modifying the expression, the interaction or the localization of such proteins, the cell dynamically responds to modifications in ECM compliance and nanotopography by activating specific genetic programs. Among the intracellular proteins acting as mechanosensors, those composing the Focal Adhesions (FAs) and the effectors of Hippo pathway YAP/TAZ have been recently described as the main actors. Here, while confirming that both FAs and YAP/TAZ respond to substrate mechanics, we demonstrate that they are sensitive to dynamic modifications of substrate nanotopography by rearranging their structure or their localization. We also show that they are not sensitive to cell polarity when cell area is kept constant. In particular, the assembly of FAs, measured by image analysis through vinculin spike formation at the periphery of the cell, and YAP/TAZ nuclear shuttling to and from the cell nucleus, are proven to be sensitive to the changes in ECM nanostructure as mimicked by thermoresponsive polymers based on crosslinked poly-caprolactone (PCL). By using such a tool, we show that YAP nuclear presence -and thus its transcriptional activity - is promptly impaired by dynamic changes in substrate nanopattern. The same dynamic modifications alter FA size distribution, thus suggesting a change in their molecular composition. In doing so, we show at single cell level that the inhibition of cell spreading and of its ability to perceive ECM mechanics by either micropatterned surfaces or pharmacological inhibitors of RhoA/ROCK or Myosin IIa pathways results in the depletion of YAP/TAZ nuclear activity, the impairment of FAs formation and the regulation of genes involved in cell-matrix interaction. Altogether our results expand the current understanding of cell mechanosensing apparatus and directly connect YAP/TAZ transcriptional activity to the ability of the cell to feel the dynamic modifications of ECM composition.
Název v anglickém jazyce
EFFECTS OF SUBSTRATE MECHANICS AND NANOTOPOGRAPHY ON HUMAN MESENCHYMAL STEM CELLS MECHANOSOME
Popis výsledku anglicky
The ability of cells to perceive the mechanics and nanostructure of the extracellular matrix (ECM) relies on the activity of a number of intracellular proteins, collectively defined as mechanosome. By modifying the expression, the interaction or the localization of such proteins, the cell dynamically responds to modifications in ECM compliance and nanotopography by activating specific genetic programs. Among the intracellular proteins acting as mechanosensors, those composing the Focal Adhesions (FAs) and the effectors of Hippo pathway YAP/TAZ have been recently described as the main actors. Here, while confirming that both FAs and YAP/TAZ respond to substrate mechanics, we demonstrate that they are sensitive to dynamic modifications of substrate nanotopography by rearranging their structure or their localization. We also show that they are not sensitive to cell polarity when cell area is kept constant. In particular, the assembly of FAs, measured by image analysis through vinculin spike formation at the periphery of the cell, and YAP/TAZ nuclear shuttling to and from the cell nucleus, are proven to be sensitive to the changes in ECM nanostructure as mimicked by thermoresponsive polymers based on crosslinked poly-caprolactone (PCL). By using such a tool, we show that YAP nuclear presence -and thus its transcriptional activity - is promptly impaired by dynamic changes in substrate nanopattern. The same dynamic modifications alter FA size distribution, thus suggesting a change in their molecular composition. In doing so, we show at single cell level that the inhibition of cell spreading and of its ability to perceive ECM mechanics by either micropatterned surfaces or pharmacological inhibitors of RhoA/ROCK or Myosin IIa pathways results in the depletion of YAP/TAZ nuclear activity, the impairment of FAs formation and the regulation of genes involved in cell-matrix interaction. Altogether our results expand the current understanding of cell mechanosensing apparatus and directly connect YAP/TAZ transcriptional activity to the ability of the cell to feel the dynamic modifications of ECM composition.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
21000 - Nano-technology
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1605" target="_blank" >LQ1605: Translační medicína</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
9TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2017)
ISBN
978-80-87294-81-9
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
611-616
Název nakladatele
TANGER LTD
Místo vydání
SLEZSKA
Místo konání akce
Brno
Datum konání akce
18. 10. 2017
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000452823300101