Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies-Quantifying noise removal and neural signal preservation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F19%3A00070691" target="_blank" >RIV/00159816:_____/19:00070691 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14740/19:00107257 RIV/65269705:_____/19:00070691
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.24433" target="_blank" >https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.24433</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/hbm.24433" target="_blank" >10.1002/hbm.24433</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies-Quantifying noise removal and neural signal preservation
Popis výsledku v původním jazyce
This study examines the impact of using different cerebrospinal fluid (CSF) and white matter (WM) nuisance signals for data-driven filtering of functional magnetic resonance imaging (fMRI) data as a cleanup method before analyzing intrinsic brain fluctuations. The routinely used temporal signal-to-noise ratio metric is inappropriate for assessing fMRI filtering suitability, as it evaluates only the reduction of data variability and does not assess the preservation of signals of interest. We defined a new metric that evaluates the preservation of selected neural signal correlates, and we compared its performance with a recently published signal-noise separation metric. These two methods provided converging evidence of the unfavorable impact of commonly used filtering approaches that exploit higher numbers of principal components from CSF and WM compartments (typically 5 + 5 for CSF and WM, respectively). When using only the principal components as nuisance signals, using a lower number of signals results in a better performance (i.e., 1 + 1 performed best). However, there was evidence that this routinely used approach consisting of 1 + 1 principal components may not be optimal for filtering resting-state (RS) fMRI data, especially when RETROICOR filtering is applied during the data preprocessing. The evaluation of task data indicated the appropriateness of 1 + 1 principal components, but when RETROICOR was applied, there was a change in the optimal filtering strategy. The suggested change for extracting WM (and also CSF in RETROICOR-corrected RS data) is using local signals instead of extracting signals from a large mask using principal component analysis.
Název v anglickém jazyce
Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies-Quantifying noise removal and neural signal preservation
Popis výsledku anglicky
This study examines the impact of using different cerebrospinal fluid (CSF) and white matter (WM) nuisance signals for data-driven filtering of functional magnetic resonance imaging (fMRI) data as a cleanup method before analyzing intrinsic brain fluctuations. The routinely used temporal signal-to-noise ratio metric is inappropriate for assessing fMRI filtering suitability, as it evaluates only the reduction of data variability and does not assess the preservation of signals of interest. We defined a new metric that evaluates the preservation of selected neural signal correlates, and we compared its performance with a recently published signal-noise separation metric. These two methods provided converging evidence of the unfavorable impact of commonly used filtering approaches that exploit higher numbers of principal components from CSF and WM compartments (typically 5 + 5 for CSF and WM, respectively). When using only the principal components as nuisance signals, using a lower number of signals results in a better performance (i.e., 1 + 1 performed best). However, there was evidence that this routinely used approach consisting of 1 + 1 principal components may not be optimal for filtering resting-state (RS) fMRI data, especially when RETROICOR filtering is applied during the data preprocessing. The evaluation of task data indicated the appropriateness of 1 + 1 principal components, but when RETROICOR was applied, there was a change in the optimal filtering strategy. The suggested change for extracting WM (and also CSF in RETROICOR-corrected RS data) is using local signals instead of extracting signals from a large mask using principal component analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Human Brain Mapping
ISSN
1065-9471
e-ISSN
—
Svazek periodika
40
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
1114-1138
Kód UT WoS článku
000459470400006
EID výsledku v databázi Scopus
2-s2.0-85056167637