Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Simple Vacuum-Based Microfluidic Technique to Establish High-Throughput Organs-On-Chip and 3D Cell Cultures at the Microscale

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F19%3A00071017" target="_blank" >RIV/00159816:_____/19:00071017 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.201800319" target="_blank" >https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.201800319</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/admt.201800319" target="_blank" >10.1002/admt.201800319</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Simple Vacuum-Based Microfluidic Technique to Establish High-Throughput Organs-On-Chip and 3D Cell Cultures at the Microscale

  • Popis výsledku v původním jazyce

    Microfluidic-based 3D cell culture and organs-on-chip have proved able to generate accurate in vitro models of human physiology. Their widespread application and adoption are however hampered by limited scalability and throughput. Here, a novel strategy is described to significantly enhance the throughput of microfluidic systems for 3D cell culture and organs-on-chips. A series of 3D culture chambers (up to 96 replicates) can be seeded with a single pipetting operation and a system of normally closed microfluidic valves ensures the resulting 3D microtissues are independent. Devices fabricated with this design principle are employed to perform 3D cultures of rat cardiac fibroblasts and profile two known drugs (doxorubicin, sotalol) in terms of cytotoxicity. In addition, human contractile cardiac microtissues is generated using iPSC-derived cardiac myocytes and functional assays on microtissues calcium transients after treatment with a known chronotropic drug (verapamil) are performed. The systems here described thus open up new perspective in the scalability of organs-on-chip and pave the way to multireplicate 3D cell cultures in microfluidics.

  • Název v anglickém jazyce

    A Simple Vacuum-Based Microfluidic Technique to Establish High-Throughput Organs-On-Chip and 3D Cell Cultures at the Microscale

  • Popis výsledku anglicky

    Microfluidic-based 3D cell culture and organs-on-chip have proved able to generate accurate in vitro models of human physiology. Their widespread application and adoption are however hampered by limited scalability and throughput. Here, a novel strategy is described to significantly enhance the throughput of microfluidic systems for 3D cell culture and organs-on-chips. A series of 3D culture chambers (up to 96 replicates) can be seeded with a single pipetting operation and a system of normally closed microfluidic valves ensures the resulting 3D microtissues are independent. Devices fabricated with this design principle are employed to perform 3D cultures of rat cardiac fibroblasts and profile two known drugs (doxorubicin, sotalol) in terms of cytotoxicity. In addition, human contractile cardiac microtissues is generated using iPSC-derived cardiac myocytes and functional assays on microtissues calcium transients after treatment with a known chronotropic drug (verapamil) are performed. The systems here described thus open up new perspective in the scalability of organs-on-chip and pave the way to multireplicate 3D cell cultures in microfluidics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advanced Materials Technologies

  • ISSN

    2365-709X

  • e-ISSN

  • Svazek periodika

    4

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

    000455117500038

  • EID výsledku v databázi Scopus